CLUSTER
Intramolecular Nitroalkene Diels–Alder Reaction
1261
1985, 50, 2626.
underwent the reaction cleanly and afforded the product in
good yield, but with slightly decreased endo selectivity
(Table 2, entry 6).
(3) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH:
New York, 2001.
(4) Selected references: (a) Denmark, S. E.; Baiazitov, R. Y.
Org. Lett. 2005, 7, 5617. (b) Denmark, S. E.; Thorarensen,
A. Chem. Rev. 1996, 96, 137. (c) Denmark, S. E.; Kesler, B.
S.; Moon, Y.-C. J. Org. Chem. 1992, 57, 4912.
(5) Selected reviews: (a) Juhl, M.; Tanner, D. Chem. Soc. Rev.
2009, 38, 2983. (b) Takao, K.; Munakata, R.; Tadano, K.
Chem. Rev. 2005, 105, 4779.
(6) Selected references: (a) Evans, D. A.; Adams, D. J. J. Am.
Chem. Soc. 2007, 129, 1048. (b) Varseev, G. N.; Maier, M.
E. Angew. Chem. Int. Ed. 2006, 45, 4767. (c) Waizumi, N.;
Itoh, T.; Fukuyama, T. J. Am. Chem. Soc. 2000, 122, 7825.
(7) Takenaka, N.; Sarangthem, R. S.; Seerla, S. K. Org. Lett.
2007, 9, 2819.
In summary, we have evaluated the Brønsted acid cataly-
sis of intramolecular Diels–Alder cyclizations of (E)-1-ni-
tro-1,6,8-nonatrienes and (E)-1-nitro-1,7,9-decatrienes.
The present study demonstrated that the Brønsted acid ca-
talysis is an effective strategy for increasing the rate and
diastereoselectivity of this class of intramolecular Diels–
Alder reactions for which Lewis acid catalysis has proved
difficult.
Typical Experimental Procedure for the Brønsted Acid Cata-
lyzed Intramolecular Nitroalkene Diels–Alder Reaction
To a solution of triene 12a (12 mg, 0.063 mmol) in CH2Cl2 (125 mL)
cooled to 0 °C was added catalyst 1 (13 mg, 0.013 mmol) in one
portion under an atmosphere of dry argon. After stirring for 5 min
at 0 °C, the reaction mixture was allowed to warm to 25 °C. After
20 h, the reaction mixture was diluted with CH2Cl2, followed by the
addition of 50 mL of MeOH–hydrazine monohydrate solution (a
50:50 mixture by volume). The resulting solution was stirred for 5
min, diluted with H2O, extracted three times with CH2Cl2. The com-
bined organic layers were washed with brine, dried over Na2SO4,
and concentrated in vacuo. The ratio of diastereomers was deter-
mined by 1H NMR analysis of the crude reaction mixture
(endo:exo = 14:1), which was purified by flash chromatography on
silica gel (1.5% EtOAc in hexanes) to provide the product (9.4 mg,
77%).
(8) Selected references: (a) Liao, B.-S.; Chen, J.-T.; Liu, S.-T.
Synthesis 2007, 3125. (b) Chang, C.-T.; Chen, C.-L.; Liu,
Y.-H.; Peng, S.-M.; Chou, P.-T.; Liu, S.-T. Inorg. Chem.
2006, 45, 7590. For the synthesis of NaBArF24·2.5H2O, see:
(c) Yakelis, N. A.; Bergman, R. G. Organometallics 2005,
24, 3579.
(9) NaBArF24·(H2O)x(PhOH)y was obtained by refluxing a
mixture of NaBArF24·2.5H2O and PhOH (2.5 equiv) in
toluene, followed by removal of toluene.
(10) Kalivretenos, A.; Stille, J. K.; Hegedus, L. S. J. Org. Chem.
1991, 56, 2883.
(11) Waizumi, N.; Stankovic, A. R.; Rawal, V. H. J. Am. Chem.
Soc. 2003, 125, 13022.
(12) Zeng, X.; Qian, M.; Hu, Q.; Negishi, E. Angew. Chem. Int.
Ed. 2004, 43, 2259.
(13) (a) Enders, D.; Hüttl, M. R. M.; Raabe, G.; Bats, J. W. Adv.
Synth. Catal. 2008, 350, 267. (b) Evans, D. A.; Barnes, D.
M.; Johnson, J. S.; Lectka, T.; von Matt, P.; Miller, S. J.;
Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos,
K. R. J. Am. Chem. Soc. 1999, 121, 7582. (c) Craig, D.;
Fischer, D. A.; Kemal, Ö.; Marsh, A.; Plessner, T.; Slawin,
A. M. Z.; Williams, D. J. Tetrahedron 1991, 47, 3095.
(14) Wollenberg, R. H.; Miller, S. J. Tetrahedron Lett. 1978, 19,
3219.
(15) Denmark, S. E.; Marcin, L. R. J. Org. Chem. 1993, 58, 3850.
(16) Ko, H. M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S.
Y.; Chung, Y. K.; Lee, E. Angew. Chem. Int. Ed. 2009, 48,
2364.
References and Notes
(1) Selected reviews: (a) Juhl, M.; Tanner, D. Chem. Soc. Rev.
2009, 38, 2983. (b) Takao, K.; Munakata, R.; Tadano, K.
Chem. Rev. 2005, 105, 4779. (c) Roush, W. R. In
Comprehensive Organic Synthesis, Vol. 5; Trost, B. M.;
Fleming, I., Eds.; Pergamon Press: Oxford, 1991, 513–550.
(2) (a) Mahmood, S. Y.; Lallemand, M.-C.; Sader-Bakaouni, L.;
Charton, O.; Vérité, P.; Dufat, H.; Tillequin, F. Tetrahedron
2004, 60, 5105. (b) Williams, D. R.; Brugel, T. A. Org. Lett.
2000, 2, 1023. (c) Sader-Bakaouni, L.; Charton, O.;
(17) Knochel and co-workers reported that silica gel promoted
the cyclization of (1E,6E,8E)-1-nitro-1,6,8-nonatriene in
hexane. See ref. 2e.
(18) Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed. 2005,
44, 1924.
Kunesch, N.; Tillequin, F. Tetrahedron 1998, 54, 1773.
(d) Guy, A.; Serva, L. Synlett 1994, 647. (e) Jubert, C.;
Knochel, P. J. Org. Chem. 1992, 57, 5431. (f) Retherford,
C.; Knochel, P. Tetrahedron Lett. 1991, 32, 441. (g) Kurth,
M. J.; O’Brien, M. J.; Hope, H.; Yanuck, M. J. Org. Chem.
Synlett 2011, No. 9, 1259–1261 © Thieme Stuttgart · New York