7014
D. R. Gauthier, Jr. et al. / Tetrahedron Letters 42 (2001) 7011–7014
ene. The resulting solution was washed with 10% aq.
13. (a) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc.
1991, 113, 8089–8110; (b) Denmark, S. E.; Almstead, N.
G. J. Org. Chem. 1991, 56, 6485–6487; (c) Denmark, S.
E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6458–6467;
(d) Denmark, S. E.; Willson, T. M.; Almstead, N. G. J.
Am. Chem. Soc. 1989, 111, 9258–9260; (e) Denmark, S.
E.; Willson, T. M. J. Am. Chem. Soc. 1989, 111, 3475–
3476; (f) Denmark, S. E.; Willson, T. M.; Almstead, N.
G. J. Am. Chem. Soc. 1989, 111, 2958; (g) Denmark, S.
E.; Wilson, T.; Willson, T. M. J. Am. Chem. Soc. 1988,
110, 984; (h) Sammakia, T.; Smith, R. S. J. Am. Chem.
Soc. 1994, 116, 7915–7916; (i) Sammakia, T.; Smith, R. S.
J. Am. Chem. Soc. 1992, 114, 10998–10999; (j) Sam-
makia, T.; Smith, R. S. J. Org. Chem. 1992, 57, 2997–
3000; (k) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki,
K.; Yamamoto, H.; Bartlett, P. A.; Heathcock, C. H. J.
Org. Chem. 1990, 55, 6107–6115; (l) Ishihara, K.; Mori,
A.; Yamamoto, H. Tetrahedron 1990, 46, 4595; (m)
Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc.
1986, 108, 7116; (n) Bartels, B.; Hunter, R. J. Org. Chem.
1993, 58, 6756–6765.
NaHSO3 (3×30 mL) and saturated brine (15 mL). The
solution was azeotropically dried by flushing with one
volume of toluene. The solution of 10 (ca. 1:1 mixture of
acetal diastereomers) was cooled to 0°C and added 1.0 M
DIBAL-H in toluene (25 mL, 25.0 mmol). The solution
was aged 18 h at 0°C. The reaction was washed with 10%
NaOH (25 mL) and saturated brine (15 mL). The solu-
tion was concentrated to a solid. (S)-13 was recrystallized
from hexanes (10 mL/g) yielding 3.10 g (70%) of a white
1
solid (mp=74–75°C). H NMR (CDCl3): l 7.83 (s, 2H),
7.80 (s, 1H), 7.47 (d, J=2.1 Hz, 2H), 7.16 (d, J=2.1 Hz,
2H), 5.00 (m, 1H), 4.53 (s, 2H), 3.67 (dd, J=2.4, 0.9 Hz,
1H), 3.48 (t, J=2.2 Hz, 1H), 2.94 (d, J=0.9 Hz, 1H). 13C
NMR (CDCl3): l 142.9, 136.2, (CF3: 131.9, 131.7, 131.5),
129.4, 126.4, 124.6, (CF3C
72.8, 71.7.
6 : 122.0, 121.9, 121.8), 74.9,
8. Greene, T. W.; Wuts, P. G. M. Protecting Groups in
Organic Synthesis, 2nd ed.; New York: Wiley-Inter-
science, 1991; pp. 128–134.
9. The product outcome can be directed with a vicinal
functional group via Lewis acid chelation. For example,
see: (a) Mikami, T.; Asano, H.; Mitsunobu, O. Chem.
Lett. 1987, 2033; (b) Pasto, M.; Moyano, A.; Pericas, M.
A.; Riera, A. Tetrahedron: Asymmetry 1995, 6, 2329–
2342; (c) Takano, S.; Kurotaki, A.; Sekiguchi, Y.; Satoh,
S.; Hirama, M.; Ogasawara, K. Synthesis 1986, 811–817;
(d) Flasche, M.; Scharf, H.-D. Tetrahedron: Asymmetry
1995, 6, 1543–1546.
10. For examples of reagent controlled regioselection in the
reduction of benzylidene protected carbohydrates, see: (a)
Garegg, P. J. Pure Appl. Chem. 1984, 56, 845–858; (b)
Johansson, R.; Samuelsson, B. J. Chem. Soc., Chem.
Commun. 1984, 201–202; (c) Johansson, R.; Samuelsson,
B. J. Chem. Soc., Perkin Trans. 1 1984, 2371–2374.
11. Diols not commercially available were prepared from the
corresponding styrene via OsO4/NMO oxidation; see:
Mukai, C.; Hirai, S.; Hanaoka, M.; J. Org. Chem. 1997,
62, 6619–6626.
14. (a) Leggetter, B. E.; Brown, R. K. Can. J. Chem. 1964,
42, 1005–1008; (b) Leggetter, B. E.; Brown, R. K. Can. J.
Chem. 1964, 42, 990–1004; (c) Leggetter, B. E.; Brown, R.
K. Can. J. Chem. 1965, 43, 1030–1035.
15. Reduction may also occur through intimate ion pairs
precluding the formation of solvent separated oxocarbe-
nium ions A2/B2 (see Ref. 13). However, the overall
electronic consequence is analogous.
R
Ph
O
Ph
O
H
Al
O
H
O
R
B1
17
A1
16
Al
R
R
Ar
Ar
16. Epimerization of 8a or 8b did not occur during the
reaction. Reaction progress and product ratios were
determined by HPLC.
17. Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. J.
Organomet. Chem. 1985, 285, 83–94.
12. All new compounds were fully characterised.