prepared in surfactant solutions and polymer solutions.4a,9a
We believe that this outstanding electrical property arises from
the exfoliation into defect-free graphene sheets, which will
provide applications of graphene for a transparent flexible
electrode.
X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim,
Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn,
B. H. Hong and S. Iijima, Nat. Nanotechnol., 2010, 5, 574.
3 (a) Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, S. Zhenyu,
S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko,
J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy,
R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and
J. N. Coleman, Nat. Nanotechnol., 2008, 3, 563; (b) U. Khan,
A. O’Neill, M. Lotya, S. De and J. N. Coleman, Small, 2010,
6, 864; (c) P. Blake, P. D. Brimiconbe, R. R. Nair, T. J. Booth,
D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov,
H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, Nano
Lett., 2008, 8, 1704.
4 (a) M. Lotya, Y. Hernandez, P. J. KWanging, R. J. Smith,
S. V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang,
I. T. McGovern, G. S. Duesberg and J. N. Coleman, J. Am. Chem.
Soc., 2009, 131, 3611; (b) M. Lotya, P. J. King, S. De and
J. N. Coleman, ACS Nano, 2010, 4, 3155.
5 (a) A. Ghosh, K. V. Rao, S. J. George and C. N. Rao, Chem.–Eur.
J., 2010, 16, 2700; (b) X. An, T. Simmons, R. Shah, C. Wolfe,
K. M. Lewis, M. Washington, S. K. Nayak, S. Talapatra and
The results described here demonstrate that an aromatic
amphiphile based on a conformationally flexible aromatic
segment including four pyrene units readily exfoliates graphite
flakes into graphene sheets in aqueous solution with concen-
trations up to 1.5 mg mLÀ1. The graphene dispersions arise
from hydrophilic functionalization of graphene surfaces with
an aromatic amphiphile based on an oligoether dendron
through a combination of amphiphilicity and p–p stacking
interactions. On the other hand, curved carbon allotropes such
as SWNTs are unable to be dispersed in aqueous solution of 1,
demonstrating that the amphiphile selectively recognizes only
2-D graphene sheets. The graphene sheets of the film are
transparent and show a good electrical property as evidenced
by transparent resistance measurements. The most notable
feature of the aromatic amphiphile synthesized here is its
ability to selectively functionalize only 2D graphene sheets
among carbon allotropes with different shapes in aqueous
solution, thereby yielding water-soluble graphene. The selective
dispersions of graphene arise from its capability to adopt a
planar conformation on 2D graphene surfaces that provides
strong mismatch in shape for highly curved spherical and
tubular structures. We anticipate that our strategy provides
new opportunities for separation of graphene from carbon
allotropes and fabrication of graphene-based composite materials
that require aqueous environments such as cytocompatible
nanomaterials through readily available noncovalent functional-
ization of graphene surfaces.9a,13,14
S. Kar, Nano Lett., 2010, 10, 4295; (c) J. M. Englert, J. Rohrl,
¨
C. D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke and
A. Hirsch, Adv. Mater., 2009, 21, 4265.
6 (a) R. J. Chen, Y. Zhang, D. Wang and H. Dai, J. Am. Chem. Soc.,
2001, 123, 3838; (b) T. J. Simmons, J. Bult, D. P. Hashim,
R. J. Linhard and P. M. Ajayan, ACS Nano, 2009, 3, 865.
7 (a) J.-H. Ryu, N.-K. Oh and M. Lee, Chem. Commun., 2005, 1770;
(b) J.-H. Ryu, J. Bae and M. Lee, Macromolecules, 2005, 38, 2050;
(c) E. Lee, J.-K. Kim and M. Lee, J. Am. Chem. Soc., 2009,
131, 18242.
8 (a) J.-K. Kim, E. Lee, M. C. Kim, E. Sim and M. Lee, J. Am.
Chem. Soc., 2009, 131, 17768; (b) E. Lee, J.-K. Kim and M. Lee,
Angew. Chem., Int. Ed., 2009, 48, 3657.
9 (a) Y. T. Liang and M. C. Hersam, J. Am. Chem. Soc., 2010,
132, 17661; (b) X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith,
R. R. Unocic, S. M. Mahurin, M. Chi and S. Dai, Chem. Commun.,
2010, 46, 4487.
10 (a) J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck
and G. C. Walker, J. Am. Chem. Soc., 2002, 124, 9034; (b) L. Li,
C. Tedeschi, D. G. Kurth and H. Mohwald, Chem. Mater., 2004,
16, 570.
We gratefully acknowledge the National Research Foundation
of Korea (NRF) grant funded by the Korean government
(MEST) (No. 2010-0019220) and U.S. Air force Office of
Scientific Research (FA 2386-10-1-4087). We acknowledge a
fellow of BK21 program from the Ministry of Education and
Human Resource Development. We thank Ji-Won Lee for
helping with Raman spectroscopy and Jung-Yeon Han for
measuring graphene film conductivity.
11 (a) Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin,
Y. Chen and J. Wei, Adv. Funct. Mater., 2009, 19, 894; (b) X. Qi,
K.-Y. Pu, X. Zhou, S. Wu, Q.-L. Fan, B. Liu, F. Boey, W. Huang
and H. Zhang, Angew. Chem., Int. Ed., 2010, 49, 9426.
12 (a) D. Graf, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and
L. Wirtz, Nano Lett., 2007, 7, 238; (b) M. S. Dresselhaus, A. Jorio,
M. Hofmann, G. Dresselhaus and R. Saito, Nano Lett., 2010,
10, 751; (c) B. Jiang, C. Tian, L. Wang, Y. Xu, R. Wang, Y. Qiao,
Y. Ma and H. Fu, Chem. Commun., 2010, 46, 4920;
(d) A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi,
M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov,
S. Roth and K. Geim, Phys. Rev. Lett., 2006, 97, 187401.
13 P. Laaksonen, M. Kainlauri, T. Laaksonen, A. Shchepetov,
H. Jiang, J. Ahopelto and M. B. Linder, Angew. Chem., Int. Ed.,
2010, 49, 4946.
Notes and references
1 A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183.
2 (a) Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature, 2005,
438, 201; (b) F. Schedin, A. K. Geim, S. V. Morezov, E. W. Hill,
P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater.,
2007, 6, 652; (c) M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim,
Phys. Rev. Lett., 2007, 98, 06805; (d) S. Bae, H. Kim, Y. Lee,
14 W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson,
J. J. Gooding and F. Braet, Angew. Chem., Int. Ed., 2010, 49, 2114.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8259–8261 8261