J.P. Kurtz et al. / Tetrahedron 67 (2011) 7211e7216
7215
observed); HRMS (ESI) m/z 549.1447 (MþH), calcd for C35H21N2O5
model. Solvent inclusion significantly changes the location of
charge density when compared to the results of gas phase calcu-
lations, but negligible differences exist between the orbitals
obtained in the two solvents.
549.1450.
4.2.4. 9-Phenyl-5H-anthro[9,1-jk]fluoranthen-5-one (15). Acecyclone
(14, 0.100 g, 0.281 mmol) was subjected to the aryne addition and
cyclization described for the preparation of 8. The crude, concen-
trated reaction mixture was chromatographed on silica gel (solvent,
Acknowledgements
2:1 hexaneseCH2Cl2) to give
a yellow solid (22.8 mg). Re-
This work was supported by National Science Foundation Grant
CHE-0936862 to (to R.A.P.), United States Department of Energy
Grant DE-FG-02-96ER14617 (to R.H.S.), and Louisiana Board of Re-
gents Fellowship BORSF 015-GF-09 (to T.G.); all are gratefully
acknowledged.
crystallization of this material from CHCl3eMeOH yielded com-
pound 15 (21.0 mg, 0.0488 mmol, 17.3%). A portion of the product
(20.0 mg, 0.0465 mmol) was further purified by preparative TLC (Rf
0.45; solvent, toluene) and recrystallization from ethanol to give 15
of high purity (17.5 mg, 0.0407 mmol); 1H NMR (CDCl3)
d 6.57 (d,
J¼7.0 Hz, 1H), 7.36 (dd, J¼8.0, 7.0 Hz, 1H), 7.53 (m, 2H), 7.61e7.69 (m,
7H), 7.80 (d, J¼8.0 Hz, 1H), 7.90 (d, J¼7.0 Hz, 1H), 7.92 (dd, J¼8.0,
2.0 Hz, 1H), 8.52 (dd, J¼8.0, 1.5 Hz, 1H), 8.66 (dd, J¼7.5, 1.5 Hz, 1H),
Supplementary data
(1) A PDF file containing 1H and 13C NMR spectra of compounds
8,12,13, and 15, images of the calculated HOMO and LUMO for 8,12,
13, and 15, and full Refs. 24,25 and (2) an ASCII text file containing
the atomic coordinates and energies of the calculated structures of
8, 12, 13, and 15. Crystallographic data (excluding structure factors)
for the structure of 12 have been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication number
CCDC 823793. Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax:
mentary data associated with this article can be found in online
8.74 (d, J¼7.5 Hz, 1H), 9.19 (d, J¼7.0 Hz, 1H); 13C NMR (CDCl3)
d 122.8,
123.8, 124.9, 126.2, 126.6, 127.4, 127.7, 127.9, 128.0, 128.3, 128.4, 128.8,
128.9, 129.0, 129.3, 129.9, 130.4, 131.8, 132.2, 132.4, 133.0, 135.6, 135.8,
136.4, 136.5, 136.6, 137.3, 137.4, 137.8, 184.4 (30 of 29 expected res-
onances observed); HRMS (EI) m/z 430.1356 (Mþ), calcd for C33H19
O
430.1358.
4.3. Photochemical studies
All electronic absorption spectra were recorded on a Hew-
lettePackard 8452A diode array spectrophotometer. All fluores-
cence spectra were obtained by using an SPEX Fluorolog
spectrofluorimeter equipped with a 450-W Xe arc lamp, single
grating monochromators with fixed slits, and a thermoelectrically
cooled ANDOR CCD detector. Luminescence quantum yields were
determined from the integrated corrected emission spectra of the
mesobenzanthrone derivatives relative to anthracene as a refer-
ence. The mesobenzanthrones were absorbance matched to the
anthracene standard at 394 nm and then degassed with nitrogen
for 10 min prior to the measurement of the emission spectra. Lu-
minescence lifetimes were obtained by the time-correlated single
photon counting technique. Each sample was excited using an IBH
NanoLED pulsed diode laser source at either 377 or 440 nm. The
emitted light was collected at right angles to the excitation pulse,
filtered through bandpass filters (Andover Corporation) and col-
lected by an IBH Model TBX-04 cooled photomultiplier (PMT) de-
tector. The output of the PMT served as the input for the stop
channel of the time to amplitude converter (TAC, Tennelec TC-863).
Start pulses for the TAC were obtained from the synchronous TTL
output of the NanoLED laser source. The output from the TAC was
directed to a multichannel analyzer (Ortec, Easy MCA), where the
References and notes
1. Tong, L.; Ho, D. M.; Vogelaar, N. J.; Schutt, C. E.; Pascal, R. A., Jr. Tetrahedron Lett.
1997, 38, 7e10.
2. Tong, L.; Ho, D. M.; Vogelaar, N. J.; Schutt, C. E.; Pascal, R. A., Jr. J. Am. Chem. Soc.
1997, 119, 7291e7302.
3. Qiao, X.; Padula, M. A.; Ho, D. M.; Vogelaar, N. J.; Schutt, C. E.; Pascal, R. A., Jr. J.
Am. Chem. Soc. 1996, 118, 741e745.
4. Bentley, P.; McKellar, J. F.; Phillips, G. O. J. Chem. Soc., Perkin Trans. 2 1974,
523e526.
5. Bentley, P.; McKellar, J. F.; Phillips, G. O. J. Chem. Soc., Perkin Trans. 2 1975,
1259e1262.
6. Bentley, P.; McKellar, J. F. J. Chem. Soc., Perkin Trans. 2 1976, 1850e1854.
7. Wagnieres, G. A.; Star, W. M.; Wilson, B. C. Photochem. Photobiol. 1998, 68,
603e632.
8. Chen, C.-T. Chem. Mater. 2004, 16, 4389e4400.
9. Goncalves, M. S. T. Springer Ser. Fluoresc. 2010, 8, 27e64.
10. Kim, E.; Park, S. B. Springer Ser. Fluoresc. 2010, 8, 149e186.
11. Rogers, M. E.; Averill, B. A. J. Org. Chem. 1986, 51, 3308e3314.
12. Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. Rev. 1965, 65, 261e367.
€
13. Dilthey, W.; Trosken, O.; Plum, K.; Schommer, W. J. Prakt. Chem. 1934, 141,
331e349.
14. Lu, J. Ph.D. Dissertation, Princeton University, 2005; pp 99e101.
15. Dilthey, W.; ter Horst, I.; Schommer, W. J. Prakt. Chem. 1935, 143, 189e210.
16. Dilthey, W.; Henkels, S.; Schaefer, A. Ber. Dtsch. Chem. Ges. 1938, 71, 974e979.
17. Pascal, R. A., Jr.; Van Engen, D.; Kahr, B.; McMillan, W. D. J. Org. Chem. 1988, 53,
1687e1689.
signal was accumulated. Laser light scattered from
a non-
luminescent solution was used to accumulate instrument re-
sponse profiles. The data were analyzed as single or double expo-
nential decays using a deconvolution routine developed by PTI
Instruments.
18. For a review of twisted acenes, see Pascal, R. A., Jr. Chem. Rev. 2006, 106,
4809e4819.
19. Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo
Park, 1978, pp 185e188.
€
20. Gusten, H.; Heinrich, G. J. Photochem. 1982, 18, 9e17.
21. Becke, A. D. J. Chem. Phys. 1993, 98, 5648e5652.
22. Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244e13249.
4.4. Computational studies
23. Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital
Theory; John Wiley: New York, NY, 1986, pp 63e100.
All hybrid density functional calculations were performed at the
B3PW91/6-31G(d) level21e23 using Gaussian 03 or Gaussian 09,24,25
and the built-in default thresholds for wave function and gradient
convergence were employed. Full geometry optimizations were
performed with both singlet and triplet wavefunctions for all
molecules. The optimized singlet geometries were used as the in-
put for TDDFT calculations at the same level of theory. These cal-
culations were used to determine several (typically 10 each) of the
lowest energy singlet and triplet electronic transitions for each
compound, both in the gas phase and with the inclusion of aceto-
nitrile or methanol solvent by means of a polarized continuum
24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;
Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Ragha-
vachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cio-
slowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;