4548
W. L. Jorgensen et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4545–4549
activity and receptor binding functions. However, the extent of
O
covalent modification appears small, and it is unlikely that it can ac-
count for the absolute activities in Table 1 or of the relative values.
For example, electron-withdrawing groups should make the ben-
zisothiazolones more reactive electrophiles; however, this is not
apparent in comparisons of the IC50 values such as for 1f and 1g ver-
sus 1a and 1c, and in comparing the isomeric 1t and 1v, where 1v
would be expected to be more reactive towards nucleophilic attack
at the conjugating para-sulfur site.
In summary, N-phenylbenzisothiazolones have been examined
for their ability to inhibit the tautomerase and signaling activities
of the cytokine MIF. Numerous analogs have been reported with
activities in the low micromolar range for inhibition of the tautom-
erase activity. Though the expectation is that they are reversible
inhibitors that bind near the tautomerase active site, mass spectro-
scopic investigation of the original virtual screening hit 1a demon-
strated that it yields a small amount of covalent modification of
Cys56 or Cys59 of MIF. The most potent MIF tautomerase inhibitor
O
HO
N
O
O
N
Se
ISO-1
ebselen
A final issue that was addressed was the possible covalent
modification of MIF by the benzisothiazolones. Many MIF inhibi-
tors have been reported to function in this manner by bonding to
the nucleophilic Pro1 or Cys residues.15b,33 Indeed, Ouertatani-
Sakouhi et al. recently reported 12 covalent modifiers of Pro1
from high-throughput screening and mass spectrometric analy-
sis33; these compounds feature reactive carbonyl functionality
that is normally avoided when seeking reversible inhibitors.34
However, they also demonstrated that the anti-inflammatory
agent ebselen inhibits MIF by covalent attachment specifically
to Cys80 among the three Cys options (56, 59, and 80).33 The
modification causes disruption of MIF trimer assembly and,
therefore, negates formation of the tautomerase active sites.33 Be-
sides the structural similarity of 1a and ebselen, it has also been
shown that some N-arylbenzisothiazolones can react with cyste-
ines yielding opening of the benzisothiazolone ring and disulfide
formation.35 The latter process should be facilitated by electron-
withdrawing substituents in the para position of the N-phenyl
ring as in the reported case with a p-sulfamoyl group.
reported here is the 6-hydroxy analog 1w at 1 lM. This compound
was also shown to cause striking retardation of ERK phosphoryla-
tion in synovial fibroblasts. Investigations continue in several veins
including evaluation of the anti-inflammatory and anti-prolifera-
tive activities of the compounds.
Acknowledgments
Gratitude is expressed to T. Lam and E. Voss of the Keck Biotech-
nology Facility for the mass spectrometric analyses, and to the
National Institutes of Health (AI042310, AR049610, AR050498,
GM032136) and the Treat B. Johnson Fund at Yale for support.
Thus, mass spectrometric studies were pursued to assess possi-
ble covalent attachment of 1a to MIF in a similar manner to the
prior investigation of 4-IPP and a benzoxazolone MIF inhibitor.18
Equimolar quantities of human MIF and 1a were mixed (30 lM of
each reactant in 0.01 mL) for 1 h at 25 °C and the reaction mixture
was analyzed (Bruker 9.4T FT-ICR). A small peak appeared at the
mass position expected for the covalent attachment of one mole-
cule of 1a with a MIF monomer (12,616 Da), as shown in Figure 3.
Analysis of the four highest peaks in the MIF alone and MIF + 1a iso-
topic distributions indicates that ca. 3% of the MIF is modified by 1a.
References and notes
1. (a) Lolis, E.; Bucala, R. Expert Opin. Ther. Targets 2003, 7, 153; (b) Greven, D.;
Leng, L.; Bucala, R. Expert Opin. Ther. Targets 2010, 14, 253.
2. (a) Santos, L. L.; Lacey, D.; Yang, Y.; Leech, M.; Morand, E. F. J. Rheumatol. 2004,
31, 1038; (b) Mitchell, R. A.; Metz, C. N.; Peng, T.; Bucala, R. J. Biol. Chem. 1999,
274, 18100.
3. Mitchell, R. A.; Liao, H.; Chesney, J.; Fingerle-Rowson, G.; Baugh, J.; David, J.;
Bucala, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 345.
4. (a) Calandra, T.; Bernhagen, J.; Metz, C. N.; Spiegel, L. A.; Bacher, M.; Donnelly,
T.; Cerami, A.; Bucala, R. Nature 1995, 377, 68; (b) Leech, M.; Metz, C.; Bucala,
R.; Morand, E. F. Arthritis Rheum. 2000, 43, 827.
5. (a) Zernecke, A.; Bernhagen, J.; Weber, C. Circulation 2008, 117, 1594; (b)
Herder, C.; Illig, T.; Baumert, J.; Mueller, M.; Klopp, N.; Khuseyinova, N.;
Meisinger, C.; Martin, S.; Thorand, B.; Koenig, W. Atherosclerosis 2008, 200, 380.
6. Calandra, T.; Roger, T. Nat. Rev. Immunol. 2003, 3, 791.
7. Kim, H.-R.; Park, M.-K.; Cho, M.-L.; Yoon, C.-H.; Lee, S.-H.; Park, S.-H.; Leng, L.;
Bucala, R.; Kang, I.; Choe, J.; Kim, H.-Y. J. Rheumatol. 2007, 34, 927.
8. Lan, H. Y. Nephron 2008, 109, 79.
9. Sanchez-Zamora, Y.; Terrazas, L. I.; Vilches-Flores, A.; Leal, E.; Juarez, I.;
Whitacre, C.; Kithcart, A.; Pruitt, J.; Sielecki, T.; Satoskar, A. R.; Rodriguez-Sosa,
M. FASEB J. 2010, 24, 2583.
10. Noels, H.; Bernhagen, J.; Weber, C. Trends Cardiovascul. Med. 2009, 19, 76.
11. Bozza, M.; Satoskar, A. R.; Lin, G.; Lu, B.; Humbles, A. A.; Gerard, C.; David, J. R. J.
Exp. Med. 1999, 189, 341.
With 4-IPP, which has a similar IC50 (4.5 lM) in the tautomerase as-
say, ca. 20% of the protein was modified.18 Further FT-ICR MS anal-
ysis of a trypsin-digested sample revealed a peptide of M = 6083 Da
that corresponds to the covalent adduct of the MIF12–66 fragment
and 1a (Fig. 3). These data are consistent with covalent attachment
of MIF and 1a at Cys56 or Cys59. The fact that Cys59 is well-buried
in the structure of the MIF trimer shifts the likelihood of the mod-
ified residue towards being Cys56. While the catalytic Pro1 is not
modified by 1a, cysteine modification could influence MIF confor-
mational integrity and account for alterations in tautomerization
MIF12-66 + 1a
M=6083.091 Da
10+
'1234.73292
12. Yamaguchi, E.; Nishihira, J.; Shimizu, T.; Takahashi, T.; Kitashiro, N.; Hizawa,
N.; Kamishima, K.; Kawakami, Y. Clin. Exp. Allergy 2000, 30, 1244.
13. Lai, K. N.; Leung, J. C. K.; Metz, C. N.; Lai, F. M.; Bucala, R.; Lan, H. Y. J. Pathol.
2003, 199, 496.
14. Meyer-Siegler, K. L.; Iczkowski, K. A.; Leng, L.; Bucala, R.; Vera, P. L. J. Immunol.
2006, 177, 8730.
5+
'1217.62544
MIF, M=12,337 Da
15. (a) Senter, P. D.; Al-Abed, Y.; Metz, C. N.; Benigni, F.; Mitchell, R. A.; Chesney, J.;
Han, J.; Gartner, C. G.; Nelson, S. D.; Todar, G. J.; Bucala, R. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 144; (b) Winner, M.; Meier, J.; Zierow, S.; Rendon, B. E.;
Crichlow, G. V.; Riggs, R.; Bucala, R.; Leng, L.; Smith, N.; Lolis, E.; Trent, J. O.;
Mitchell, R. A. Cancer Res. 2008, 68, 7253; (c) McLean, L. R.; Zhang, Y.; Li, H.;
Choi, Y.-M.; Han, Z.; Li, Y. Bioorg. Med. Chem. Lett. 2009, 20, 1821.
16. For reviews, see: (a) Orita, M.; Yamamoto, S.; Katayama, N.; Fujita, S. Curr.
Pharm. Des. 2002, 8, 1297; (b) Garai, J.; Lorand, T. Curr. Med. Chem. 2009, 16,
1091.
17. Cournia, Z.; Leng, L.; Gandavadi, S.; Du, X.; Bucala, R.; Jorgensen, W. L. J. Med.
Chem. 2009, 52, 416.
18. Hare, A. A.; Leng, L.; Gandavadi, S.; Du, X.; Cournia, Z.; Bucala, R.; Jorgensen, W.
L. Bioorg. Med. Chem. Lett. 2010, 20, 5811.
m/z
1217.5 1218.5 1219.5
MIF + 1a,
M=12,616 Da
10+
'1262.52988
m/z
1235 1240 1245 1250 1255 1260 1265 1270
Figure 3. Mass spectrometric results demonstrating minor covalent modification of
MIF by 1a. The inset shows the product after trypsin digestion of the modified
protein.