introducing a formyl group to a porphyrinic macrocycle
A New Rou te to m eso-F or m yl P or p h yr in s
entails Vilsmeier formylation.10 Vilsmeier formylation,
6,13
Arumugham Balakumar, Kannan Muthukumaran, and
J onathan S. Lindsey*
either with the traditional DMF/POCl3
or the more
recent HC(OMe)3/TFA or SnCl4,3 can only be carried out
with metalloporphyrins that are stable toward strong
acids (e.g., copper or nickel chelates). Hence, formylation
typically requires three steps: (1) insertion of copper into
a free base porphyrin, (2) formylation of the copper
chelate, and (3) demetalation of copper to give the free
base porphyrin bearing the formyl group. The removal
of copper generally requires strongly acidic conditions
such as TFA in H2SO4. The yield of the Vilsmeier
formylation is typically quite high (though mixtures of
polyformylated metalloporphyrins are known10,14,15). How-
ever, the requirement for a three-step procedure, use of
strong acid, and limited control over the site of formyla-
tion presents obvious limitations.
Department of Chemistry, North Carolina State University,
Raleigh, North Carolina 27695-8204
jlindsey@ncsu.edu
Received J anuary 31, 2004
Abstr a ct: Prior syntheses of porphyrins bearing meso-
formyl groups have generally employed the Vilsmeier formy-
lation of an acid-resistant copper or nickel porphyrin. A new
approach for the synthesis of free base porphyrins bearing
one or two (cis or trans) meso-formyl substituents entails
the use of a dipyrromethane bearing an acetal group at the
5-position, a dipyrromethane-1-carbinol bearing an acetal
group at the 5-position or carbinol position, or a dipyr-
romethane-1,9-dicarbinol bearing an acetal group at
a
There exists a need for a milder and more direct
procedure for preparing formyl porphyrins. Two routes
to porphyrins bearing distinct patterns of meso substit-
uents include (1) the self-condensation of a dipyr-
romethane-1-carbinol, affording trans-A2B2-porphyrins,16
and (2) the reaction of a dipyrromethane and a dipyr-
romethane-1,9-dicarbinol, affording porphyrins with up
to four different meso substituents (ABCD-porphyrins).17
We considered that the incorporation of a latent formyl
synthon in a dipyrromethane, dipyrromethane-1-carbinol,
or dipyrromethane-1,9-dicarbinol would enable a direct,
mild synthesis of formyl porphyrins. A recent paper by
Trova et al. outlined the condensation of a dipyr-
romethane bearing a 5-carboethoxy or 5-N,N-dimethy-
laminocarbonyl group with an aldehyde to give the
corresponding trans-A2B2-porphyrin.18 Such groups upon
further transformation could provide a complementary
entry into meso-formyl porphyrins. In this paper, we
describe the synthesis of four dipyrromethane or acyl-
dipyrromethane components, each bearing one or two
latent meso-formyl groups and explore their utility in
rational routes to porphyrins.
5-F or m ylp or p h yr in s. We initially examined the use
of a 5-(dithiolan-2-yl)dipyrromethane as a precursor to
porphyrins bearing a latent formyl group, but upon
porphyrin formation, the meso-dithiolane group was
partially lost, yielding a mixture of porphyrins (see
Supporting Information). While the origin of the frag-
mentation reaction was not clear, we turned to the use
of an acetal protecting group. The acid-catalyzed reaction
of glyoxal with neopentyl glycol provided a mixture of
carbinol position. Treatment of the resulting meso-acetal-
substituted free base porphyrin to gentle acidic hydrolysis
yields the corresponding meso-formyl porphyrin.
Formyl-substituted porphyrinic macrocycles provide
versatile intermediates and target molecules in bioor-
ganic and materials chemistry. Notable reactions of the
porphyrinic formyl group include classical reactions of
aldehydes (e.g., Wittig,1-3 Grignard,2,4 McMurry,5 Schiff’s
base,6-8 Knoevenagel7,9 10 as well as reaction with pyrrole
)
or a dipyrromethane leading to multi-porphyrinic archi-
tectures.11 The formyl group also has been exploited in
supramolecular chemistry wherein the oxygen of the
formyl group binds to the apical site on a neighboring
metalloporphyrin.12 Although a few formyl-porphyrinic
compounds occur naturally (e.g., chlorophyll b), most
must be synthesized de novo. The generic method for
(1) (a) Callot, H. J . Tetrahedron 1973, 29, 899-901. (b) Arnold, D.
P.; Gaete-Holmes, R.; J ohnson, A. W.; Smith, A. R. P.; Williams, G. A.
J . Chem. Soc., Perkin. Trans. 1 1978, 1660-1670. (c) Burrell, A. K.;
Officer, D. L. Synlett 1998, 1297-1307.
(2) Arnold, D. P.; J ohnson, A. W.; Mahendran, M. J . Chem. Soc.,
Perkin. Trans. 1 1978, 366-370.
(3) (a) Montforts, F.-P.; Scheurich, G.; Meier, A.; Haake, G.; Ho¨per,
F. Tetrahedron Lett. 1991, 32, 3477-3480. (b) Ando, A.; Yamazaki,
M.; Komura, M.; Sano, Y.; Hattori, N.; Omote, M.; Kumadaki, I.
Heterocycles 1999, 50, 913-918.
(4) Runge, S.; Senge, M. O. Tetrahedron 1999, 55, 10375-10390.
(5) (a) Vicente, M. G. H.; Smith, K. M. J . Org. Chem. 1991, 56, 4407-
4418. (b) J aquinod, L.; Nurco, D. J .; Medforth, C. J .; Pandey, R. K.;
Forsyth, T. P.; Olmstead, M. M.; Smith, K. M. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1013-1016.
(6) J ohnson, A. W.; Oldfield, D. J . Chem. Soc. C 1966, 794-798.
(7) Witte, L.; Fuhrhop, J .-H. Angew. Chem., Int. Ed. 1975, 14, 361-
363.
(8) (a) Ponomarev, G. V. Chem. Heterocycl. Compd. 1996, 32, 1263-
1280. (b) Ponomarev, G. V.; Morozova, Y. V.; Yashunsky, D. V. Chem.
Heterocycl. Compd. 2001, 37, 253-255.
(9) Schlo¨zer, R.; Fuhrhop, J .-H. Angew. Chem., Int. Ed. 1975, 14,
363.
(13) Inhoffen, H. H.; Fuhrhop, J .-H.; Voigt, H.; Brockmann H., J r.
J ustus Liebigs Ann. Chem. 1966, 695, 133-143.
(14) (a) Ponomarev. G. V.; Kirillova, G. V.; Maravin, G. B.; Babush-
kina, T. A.; Suboch, V. P. Chem. Heterocycl. Compd. 1979, 15, 622-
629. (b) Ponomarev, G. V.; Kirillova, G. V.; Maravin, G. B.; Babushkina,
T. A.; Suboch, V. P. Chem. Heterocycl. Compd. 630-633.
(15) (a) Smith, K. M., Bisset, G. M. F., Tabba, H. D. J . Chem. Soc.,
Perkin. Trans. 1 1982, 581-585. (b) Smith, K. M.; Bisset, G. M. F.;
Case, J . J .; Tabba, H. D. Tetrahedron Lett. 1980, 21, 3747-3750.
(16) Rao, P. D.; Littler, B. J .; Geier, G. R., III; Lindsey, J . S. J . Org.
Chem. 2000, 65, 1084-1092.
(10) Ponomarev, G. V. Chem. Heterocycl. Compd. 1994, 30, 1444-
1465.
(11) (a) Wasielewski, M. R.; J ohnson, D. G.; Niemczyk, M. P.; Gaines,
G. L., III; O’Neil, M. P.; Svec, W. A. J . Am. Chem. Soc. 1990, 112,
6482-6488. (b) J ohnson, D. G.; Niemczyk, M. P.; Minsek, D. W.;
Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L., III; Wasielewski, M. R.
J . Am. Chem. Soc. 1993, 115, 5692-5701.
(12) Balaban, T. S.; Bhise, A. D.; Fischer, M.; Linke-Schaetzel, M.;
Roussel, C.; Vanthuyne, N. Angew. Chem., Int. Ed. 2003, 42, 2140-
2144.
(17) Rao, P. D.; Dhanalekshmi, S.; Littler, B. J .; Lindsey, J . S. J .
Org. Chem. 2000, 65, 7323-7344.
(18) Trova, M. P.; Gauuan, P. J . F.; Pechulis, A. D.; Bubb, S. M.;
Bocckino, S. B.; Crapo, J . D.; Day, B. J . Bioorg. Med. Chem. 2003, 11,
2695-2707.
10.1021/jo049819b CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/22/2004
5112
J . Org. Chem. 2004, 69, 5112-5115