Table 1. Fundamental Data for Nucleophilic Addition
Scheme 2. Two-step Preparation of Pyrroles
haloacetylene
X
product
entry
4 (equiv)
yield (%)a recovered 4 (%)b
1
2
3
4
5
Cl
Br
I
1
2
3
2
2
3
5 54, 65c
3
6 74, quant.d
76
3
7 (7), (6)e
6 71
6 (54)f
Br
Br
2
1.5
in the crude reaction mixture. The use of excess sulfonamide
(2À3 equiv to bromoacetylene) is preferable to afford good
yields (entries 2 and 4 vs 5). However, in a typical run (entry 2),
the unreacted sulfonamide was completely recovered and
may be recycled; therefore, the yield of product 6 was cal-
culated to be quantitative based on consumed sulfon-
amide 4. Although a precise mechanism of this reaction is
not presently clear, it can be formally categorized as
nucleophilic addition of sulfonamides to an electron-
deficient acetylenic bond.
a Isolated yield based on haloacetylene. Values in parentheses were
determined by 1H NMR using an internal standard. b Isolated yield based
on 4. c Reaction was continued until 1 was completely consumed (6 h).
d Yield based on consumed 4. e Reaction was continued until 3 was
completely consumed (6 h). f Reaction period was extended to 4 h.
nucleophile could be particularly useful for many types
of cyclizations. Considering this fact, we investigated the
application of these products in a concise preparation of
pyrroles according to Scheme 2.8,9 In fact, upon treating
product 6 (Table 1) with a palladium catalyst under Heck
conditions,10 the desired cyclization took place providing
pyrrole 8 directly in good yield, as shown in eq 2.11,12 While
various vinyl bromides participate in the Heck reaction,
(8) For reviews on pyrrole synthesis, see: (a) Katritzky, A. R., Rees,
C. W., Bird, C. W., Cheeseman, G. W. H., Eds. Comprehensive Hetero-
cyclic Chemistry; Pergamon Press: Oxford, 1984; Vol. 4. (b) Gilchrist, T. L.
J. Chem. Soc., Perkin 1 2001, 2491–2515. (c) Balme, G. Angew. Chem.,
Int. Ed. 2004, 43, 6238–6241. (d) Patil, N. T.; Yamamoto, Y. Arkivoc
2007, 121–141. (e) Bellina, F.; Rossi, R. Tetrahedron 2006, 62, 7213–
7256. (f) Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095–3110.
(9) For recent reports on pyrrole synthesis from olefins or acetylenes,
see: (a) Trost, B. M.; Lumb, J.-P.; Azzarelli, J. M. J. Am. Chem. Soc.
2011, 133, 740–743. (b) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou,
K. J. Am. Chem. Soc. 2010, 132, 18326–18339. (c) Rakshit, S.; Patureau,
F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585–9587. (d) Ribeiro
Laia, F. M.; Cardoso, A. L.; Beja, A. M.; Silva, M. R.; Pinho e Melo, T.
M. V. D. Tetrahedron 2010, 66, 8815–8822. (e) Liu, W.; Jiang, H.;
Huang, L. Org. Lett. 2010, 12, 312–315. (f) Peng, H. M.; Zhao, J.; Li, X.
Adv. Synth. Catal. 2009, 351, 1371–1377. (g) Wang, J.-Y.; Wang, X.-P.;
Yu, Z.-S.; Yu, W. Adv. Synth. Catal. 2009, 351, 2063–2066. (h) Mizuno,
A.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2009, 48, 8318–
8320. (i) Wyre-bek, P.; Sniady, A.; Bewick, N.; Li, Y.; Mikus, A.;
Wheeler, K. A.; Dembinski, R. Tetrahedron 2009, 65, 1268–1275.
(j) Aponick, A.; Li, C.-Y.; Malinge, J.; Marques, E. F. Org. Lett.
2009, 11, 4624–4627. (k) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009,
While the aforementionedreaction isoperationally quite
simple, the products, 1-bromo-2-(sulfonylamino)-1-alkenes
with defined stereochemistry, are otherwise tedious to
prepare but are versatile synthetic intermediates. For in-
stance, thecisalignmentofvinylbromideandtheincoming
(5) For reviews on nucleophilic addition to haloacetylenes, see:
(a) Chambers, R. D.; James, S. R. In Comprehensive Organic Chemistry;
Barton, D., Ollis, W. D., Stoddart, J. F., Eds.; Pergamon Press: Oxford, 1979;
Vol. 1, pp 557À560. (b) Himbert, G. In Methoden der Organischen
Chemie (Houben-Weyl); Kropf, H., Schaumann, E., Eds.; Georg Thieme:
Stuttgart, 1993; Vol. E15, Part 3, pp 3320À3321. For addition of hydride
or halide, see: (c) Zweifel, G.; Lewis, W.; On, H. P. J. Am. Chem. Soc.
ꢀ
1979, 101, 5101–5102. (d) Tanaka, R.; Zheng, S.-Q.; Kawaguchi, K.;
Tanaka, T. J. Chem. Soc., Perkin 2 1980, 1714–1720. After almost
completing this work, similar nucleophilic addition to haloacetylenes
was mentioned as an intermediate in the reaction of 1,1-dibromoolefins
and nucleophiles:(e) Xu, H.; Gu, S.; Chen, W.; Li, D.; Dou, J. J. Org.
Chem. 2011, 76, 2448–2458.
(6) For intramolecular nucleophilic addition to haloacetylenes with
amino group: (a) Elokhina, V. N.; Yaroshenko, T. I.; Nakhmanovich,
A. S.; Albanov, A. I. Russ. J. Org. Chem. 2006, 42, 1866–1867.
(b) Elokhina, V. N.; Nakhmanovich, A. S.; Larina, L. I.; Yaroshenko,
T. I.; Amosova, S. V. Russ. J. Org. Chem. 2009, 45, 226–228. With
hydroxy group:(c) Grandjean, D.; Pale, P.; Chuche, J. Tetrahedron Lett.
1992, 33, 4905–4908. (d) Nakhmanovich, A. S.; Elokhina, V. N.; Larina,
L. I.; Abramova, E. V.; Lopyrev, V. A. Russ. J. Gen. Chem. 2005, 75,
437–439. (e) Miao, Z.; Xu, M.; Hoffmann, B.; Bernet, B.; Vasella, A.
Helv. Chim. Acta 2005, 88, 1885–1912.
€
11, 5002–5005. (l) Merkul, E.; Boersch, C.; Frank, W.; Muller, T. J. J.
Org. Lett. 2009, 11, 2269–2272.
(10) For recent reviews on Heck reaction, see: (a) Beletskaya, I. P.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. (b) Whitcombe,
N. J.; Hii, K. K. (M.); Gibson, S. E. Tetrahedron 2001, 57, 7449–7476.
(c) Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945–2963.
(d) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal.
ꢀ
ꢀ
2006, 348, 609–679. (e) Polshettiwar, V.; Molnar, A. Tetrahedron 2007,
63, 6949–6976. (f) Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.;
Fouquet, E. Tetrahedron 2011, 67, 2815–2831.
(11) For relevant cyclization of N-allyl-o-bromoanilines to indoles,
see: (a) Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.;
Jørgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888–890. (b) Majumdar,
K. C.; Chakravorty, S.; Shyam, P. K.; Taher, A. Synthesis 2009, 403–
408. For a review of intramolecular Heck reaction, see:(c) Link, J. T. In
Organic Reactions; Overman, L. E., Ed.; Wiley: New York, 2002; Vol. 60,
pp 157À534.
(7) Transition metal-catalyzed addition of nucleophiles to haloace-
tylenes has recently appeared. For an intermolecular reaction, see:
(a) Das, B.; Reddy, G. C.; Balasubramanyam, P.; Salvanna, N. Synthesis
2011, 816–820. (b) Burley, G. A.; Davies, D. L.; Griffith, G. A.; Lee, M.;
Singh, K. J. Org. Chem. 2010, 75, 980–983. For intramolecular reac-
tions, see:(c) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Tetrahedron 2009,
ꢀ
65, 1889–1901. (d) Harkat, H.; Dembele, A. Y.; Weibel, J.-M.; Blanc, A.;
(12) The conditions of eq 2 were adopted from ref 11b and the
following: Jeffery, T. Tetrahedron 1996, 52, 10113–10130. However, in
this reaction, 3 mol % of the Pd catalyst was sufficient (84% yield of 8),
but 10 mol % of the catalyst was routinely used to insure the complete
reaction in the runs of Table 2. Likewise, when 3 mol % of Pd was used in
eq 3, the overall yield of 8 from 2 was 55%.
Pale, P. Tetrahedron 2009, 65, 1871–1879. (e) Buzas, A.; Gagosz, F. Org.
Lett. 2006, 8, 515–518. For reviews on relevant metal-mediated hydro-
amination of acetylenes, see:(f) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. Rev. 2004, 104, 3079–3159. (g) Pohlki, F.; Doye, S. Chem. Soc.
Rev. 2003, 32, 104–114.
4874
Org. Lett., Vol. 13, No. 18, 2011