Journal of the American Chemical Society
COMMUNICATION
use of 2 equiv of AgPF6 gave the highest observed yields of
trifluoromethoxylation, which could suggest a dinuclear silver
complex as a key intermediate in CÀOCF3 bond formation.
Bimetallic silver redox behavior has previously been proposed for
the Ag-mediated fluorination of aryl stannanes.3j,o,r In the
fluorination reaction, catalysis could be achieved but required
heating to 65 °C. A similar approach to achieve silver catalysis
for trifluoromethoxylation was not successful, presumably due
to the thermal instability of trifluoromethoxide.
In conclusion, a Ag-mediated trifluoromethoxylation of func-
tionalized aryl stannanes and arylboronic acids is reported. The
inability to efficiently trifluoromethoxylate arenes with basic
functional groups such as amines and pyridines is currently a
limitation of the reaction. In addition, the necessity for toxic
arylstannanes and the two-step procedure from arylboronic acids
currently limits the practicality of the presented trifluoromethoxy-
lation reaction. Currently, however, no other method is available
to trifluoromethoxylate aryl nucleophiles via cross-coupling. We
have addressed the fundamental challenges associated with
CarylÀOCF3 bond formation via silver redox chemistry. Future
efforts in the field should be directed at the development of more
practical reactions with broader functional group tolerance.
D. A. Organometallics 2008, 27, 6233–6235. (k) Dubinina, G. G.;
Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600–8601.
(l) Oishi, M.; Kondo, H; Amii, H. Chem. Commun. 2009, 1909–1911.
(m) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060–5063. (n) Ball, N. D.;
Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878–2879.
(o) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 2010,
132, 3648–3649. (p) Ye, Y.; Ball, N. D.; Kampf, J. W.; Sanford, M. S.
J. Am. Chem. Soc. 2010, 132, 14682–14687. (q) Cho, E. J.; Senecal, T. D.;
Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. Science 2010,
328, 1679–1681. (r) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int.
Ed. 2010, 49, 9322–9324. (s) Chu, L.; Qing, F.-L. Org. Lett. 2010,
12, 5060–5063. (t) Knauber, T.; Arikan, F.; R€oschenthaler, G.-V.;
Goossen, L. J. Chem.—Eur. J. 2011, 17, 2689–2697. (u) Zhang, C.-P.;
Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew.
Chem., Int. Ed. 2011, 50, 1896–1900. (v) Senecal, T. D.; Parsons, A. T.;
Buchwald, S. L. J. Org. Chem. 2011, 76, 1174–1176. (w) Morimoto, H.;
Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011,
50, 3793–3798. (x) Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am.
Chem. Soc. 2011, 133, 7577–7584.
(3) (a) Tius, M. A.; Kawakami, J. K. Synth. Commun. 1992,
22, 1461–1471. (b) Tius, M. A.; Kawakami, J. K. Synlett 1993, 207.
(c) Tius, M. A.; Kawakami, J. K. Tetrahedron 1995, 51, 3997–4010.
(d) Subramanian, M. A.; Manzer, L. E. Science 2002, 297, 1665. (e) Hull,
K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 7134–7135. (f) Akana, J. A.; Bhattacharyya, K. X.; M€uller, P.;
Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 7736–7737. (g) Kaspi, A. W.;
Yahav-Levi, A.; Goldberg, I.; Vigalok, A. Inorg. Chem. 2008, 47, 5–7.
(h) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008,
47, 5993–5996. (i) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008,
130, 10060–10061. (j) Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem.
Soc. 2009, 131, 1662–1663. (k) Ball, N. D.; Sanford, M. S. J. Am. Chem.
Soc. 2009, 131, 3796–3797. (l) Wang, X.; Mei, T. S.; Yu, J.-Q. J. Am.
Chem. Soc. 2009, 131, 7520–7521. (m) Wu, T.; Yin, G.; Liu, G. J. Am.
Chem. Soc. 2009, 131, 16354–16355. (n) Watson, D. A.; Su, M.;
Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald,
S. L. Science 2009, 325, 1661–1664. (o) Furuya, T.; Ritter, T. Org. Lett.
2009, 11, 2860–2863. (p) Gorske, B. C.; Mbofana, C. T.; Miller, S. J. Org.
Lett. 2009, 11, 4318–4321. (q) Furuya, T.; Benitez, D.; Tkatchouk, E.;
Strom, A. E.; Tang, P.; Goddard, W. A., III; Ritter, T. J. Am. Chem. Soc.
2010, 132, 3793–3807. (r) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem.
Soc. 2010, 132, 12150–12154.
(4) (a) Jeschke, P.; Bastonb, E.; Leroux, F. R. Mini-Rev. Med. Chem.
2007, 7, 1027–1034. (b) Leroux, F. R.; Manteau, B.; Vors, J.-P; Pazenok,
S. Beilstein J. Org. Chem. 2008, 4, No. 13.
(5) (a) Kolomeitsev, A. A.; Vorobyev, M.; Gillandt, H. Tetrahedron
Lett. 2008, 49, 449–454. (b) Martin, J. C.; Taylor, S. L. J. Org. Chem.
1987, 52, 4147–4156.
(6) (a) Fout, A. R.; Scott, J.; Miller, D. L.; Bailey, B. C.; Pink, M.;
Mindiola, D. J. Organometallics 2009, 28, 331–347. (b) Kraft, B. M.;
Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 727–731.
(7) Teverovskiy, G.; Surry, D. S.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2011, 123, 7312–7314.
(8) (a) Sheppard, W. A. J. Org. Chem. 1964, 29, 1–11. (b) Feiring,
A. E. J. Org. Chem. 1979, 44, 2907–2910. (c) Kuroboshi, M.; Suzuki, K.;
Hiyama, T. Tetrahedron Lett. 1992, 33, 4173–4176. (d) Salomꢀe, J.; Mauger,
C.; Brunet, S.; Schanen, V. J. Fluorine Chem. 2004, 125, 1947–1958.
(e) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827–856.
(9) Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.;
Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332–4336.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures and spectroscopic characterization for all new compounds.
This material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank Pingping Tang (Harvard), Jean Reynaud (Harvard),
and Ian Mangion (Merck) for helpful discussions as well as NSF
(CHE-0952753), the Massachusetts Life Science Center, NIH-
NIGMS (GM088237), and Merck for funding. T.R. is a Sloan
fellow, a Lilly Grantee, an Amgen Young Investigator, and an
AstraZeneca Awardee.
’ REFERENCES
(1) (a) Yamazaki, T.; Taguchi, T; Ojima, I. In Fluorine in Medicinal
Chemistry and Chemical Biology; Ojima, I., Ed.; Wiley-Blackwell:
Chichester, U.K., 2009. (b) Jeschke, P. ChemBioChem 2004, 5, 570–
589. (c) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun.
2007, 1003–1022. (d) M€uller, K.; Faeh, C.; Diederich, F. Science 2007,
317, 1881–1886. (e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur,
V. Chem. Soc. Rev. 2008, 37, 320–330. (f) Furuya, T.; Kamlet, A. S.;
Ritter, T. Nature 2011, 473, 470–477.
(2) (a) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969,
10, 4095–4096. (b) McLoughlin, V. C. R.; Thrower, J. Tetrahedron
1969, 25, 5921–5940. (c) Matsui, K.; Tobita, E.; Ando, M.; Kondo, K.
Chem. Lett. 1981, 10, 1719–1720. (d) Kitazume, T.; Ishikawa, N. Chem.
Lett. 1982, 11, 137–140. (e) Wiemers, D. M.; Burton, D. J. J. Am. Chem.
Soc. 1986, 108, 832–834. (f) Cottet, F.; Schlosser, M. Eur. J. Org. Chem.
2002, 327–330. (g) Schlosser, M. Angew. Chem., Int. Ed. 2006,
45, 5432–5446. (h) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc.
2006, 128, 4632–4641. (i) Grushin, V. V.; Marshall, W. J. J. Am. Chem.
Soc. 2006, 128, 12644–12645. (j) Dubinina, G. G.; Ogikubo, J.; Vicic,
(10) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678–7685.
(11) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72,
6905–6917.
(12) (a) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302–309.
(b) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am.
Chem. Soc. 2009, 131, 17050–17051. (c) Powers, D. C.; Xiao, D. Y.;
Geibel, M. A. L.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 14530–14536.
(d) Powers, D. C.; Ritter, T. Top. Organomet. Chem. 2011, 35, 129–156.
13310
dx.doi.org/10.1021/ja204861a |J. Am. Chem. Soc. 2011, 133, 13308–13310