applications has led to a demand for efficient synthesis of
related compounds, especially those with high enantios-
electivity. We have recently established a series of 1,3-
dipolar cycloadditions between azomethine ylides and
electron-deficient olefins in excellent enantioselectivity
using chiral phosphoric acids as catalysts wherein a chiral
Brønsted acid bonded dipole is involved.13 Encouraged by
this success and in view of no enantioselective version of
the 1,3-dipolar cycloadditions of alkynes with azomethine
ylides as well as the importance of 2,5-dihydropyrroles, we
decided to use a chiral Brønsted acid14 to control the
stereoselectivity of the titled reaction. Herein, we report
the first asymmetric version of this reaction with exquisite
levels of enantioselectivity (up to >99% ee).
achieved in toluene (entry 8). More significantly, an ex-
quisite level of enantioselectivity of >99%eewas observed
for the reaction involving 1-phenylprop-2-yn-1-one (2b), but
the yield turned out to be moderate (entry 9). The presence of
excess amounts of 3a enabled the reaction to give a higher
yield with a maintained enantioselectivity (entry 10 vs 9).
With optimal conditions in hand, we then explored the
generality for aldehydes by reaction with 1-phenylprop-2-
yn-1-one (2b) and 2-aminomalonate (4a). As shown in
Table 2, the protocol is amenable to a wide scope of
aromatic aldehydes including electronically poor and rich
ones in excellent enantioselectivities (entries 1ꢀ9). Basi-
cally, benzaldehydes substituted with an electronically
withdrawing group at the para-position gave perfect
stereoselectivities (entries 1, 4, and 5, up to >99% ee).
The position of the substituent of benzaldehydes appeared
to exert some impact on the stereoselectivity (entries 1ꢀ3).
Importantly, even if electronically rich benzaldehydes
were applied, a high enantioselectivity could also be
delivered as exemplified by the reaction with 4-methox-
ylbenzaldehyde (entry 8). Moreover, disubstituted ben-
zaldehyde appeared to be an excellent substrate, offering a
perfect enantioselecitvity of >99% ee (entry 9). It is
noteworthy that heteroaromatic aldehyde and aliphatic
aldehyde can also be applied to this reaction with high
enantioselectivity (entries 10 and 11).
Table 1. Screening of Catalyst and Optimization of Conditionsa
The substrate scope with respect to ynones 2 was next
explored by reaction with either electronically poor or rich
benzaldehydes (Table 3). Both aliphatic and aromatic
ynones were capable of undergoing the reaction with
high to excellent enantioselectivities, while the former gave
a lower enantioselectivity (94% ee) than the aromatic
ones (entry 9 vs 1ꢀ4). When 4-nitrobenzaldehyde was
entry
5
1
solvent
yield (%)b
ee (%)c
1
2
5aaa
5aaa
5aaa
5aaa
5aaa
5aaa
5aaa
5aaa
5baa
5baa
1a
1b
1c
1d
1e
1f
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CHCl3
77
75
91
73
65
79
76
74
62
69
<5
7
3
<5
<5
<5
13
4
5
6
7
1f
26
ꢀ
(3) For highlights, see: (a) Najera, C.; Sansano, J. M. Angew. Chem.,
8
1f
toluene
toluene
toluene
94
Int. Ed. 2005, 44, 6272. Early reports:(b) Longmire, J. M.; Wang, B.;
Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (c) Gothelf, A. S.;
Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2002, 41, 4236. Selected examples:(d) Chen, C.; Li, X.; Schreiber, S. L.
9
1f
>99
>99d
10
1f
a The reaction was carried out in 0.1 mmol scale in solvent (1 mL)
€
J. Am. Chem. Soc. 2003, 125, 10174. (e) Knopfel, T. F.; Aschwanden, P.;
Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem., Int. Ed.
ꢀ
˚
with 3 A MS (100 mg) for 12 h (2a) or 36 h (2b), and 2/3a/4a was
2.5/1.2/1. b Isolated yield. c Determined by HPLC. d 2b/3a/4a was 2.5/2/1.
2004, 43, 5971. (f) Cabrera, S.; Arrayas, R. G.; Carretero, J. C. J. Am.
Chem. Soc. 2005, 127, 16394. (g) Yan, X.-X.; Peng, Q.; Zhang, Y.;
Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed.
2006, 45, 1979. (h) Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am.
Chem. Soc. 2007, 129, 750. (i) Saito, S.; Tsubogo, T.; Kobayashi, S.
J. Am. Chem. Soc. 2007, 129, 5364. (j) Tsubogo, T.; Saito, S.; Seki, K.;
Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 13321. (k)
Wang, C.-J.; Liang, G.; Xue, Z.-Y.; Gao, F. J. Am. Chem. Soc. 2008, 130,
17250. (l) Arai, T.; Mishiro, A.; Yokoyama, N.; Suzuki, K.; Sato, H.
J. Am. Chem. Soc. 2010, 132, 5338. (m) Padilla, S.; Tejero, R.; Adrio, J.;
Carretero, J. C. Org. Lett. 2010, 12, 5608. (n) Zhang, C.; Yu, S.-B.; Hu,
X.-P.; Wang, D.-Y.; Zheng, Z. Org. Lett. 2010, 12, 5542. (o) Yamashita,
Y.; Guo, X.-X.; Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010,
132, 3262. (p) Oura, I.; Shimizu, K.; Ogata, K.; Fukuzawa, S. Org. Lett.
2010, 12, 1752. (q) Robles-Machin, R.; Gonzalez-Esguevillas, M.;
Adrio, J.; Carretero, J. C. J. Org. Chem. 2010, 75, 233. (r) Robles-
Machin, R.; Alonso, I.; Adrio, J.; Carretero, J. C. Chem.;Eur. J. 2010,
16, 5286. (s) Wang, M.; Wang, Z.; Shi, Y.-H.; Shi, X.-X.; Fossey, J. S.;
Deng, W.-P. Angew. Chem., Int. Ed. 2011, 50, 4897. (t) Yamashita, Y.;
Imaizumi, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 4893.
At the outset of our study, we conducted a reaction of
3-butynone (2a) and diethyl 2-aminomalonate (4a) with
4-nitrobenzaldehyde (3a) in dichloromethane at room
temperature in the presence of 10 mol % of chiral phos-
phoric acids 1. However, the preliminary screening of the
catalysts led to disappointing results (Table 1, entries 1ꢀ6).
To our delight, the screening of solvents revealed that
nonpolar solvents appeared to be more suitable for the
reaction and a high enantioselectivity of 94% ee could be
(1) Padwa, A.; Pearson, W. H. Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural Products;
John Wiley & Sons, Inc.: New York, 2002.
ꢀ
(4) (a) Vicario, J. L.; Reboredo, S.; Badιa, D.; Carrillo, L. Angew.
(2) (a) Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96, 1825. (b)
Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (c) Pandey, G.;
Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (d) Nair, V.; Suja,
T. D. Tetrahedron 2007, 63, 12247. (e) Pearson, W. H. In Studies in
Natural Product Chemistry; Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam,
1998; Vol. 1, p 323.
Chem., Int. Ed. 2007, 46, 5168. (b) Ibrahem, I.; Rios, R.; Vesely, J.;
Cordova, A. Tetrahedron Lett. 2007, 48, 6252. For leading literature on
organocatalytic 1,3-dipolar cycloaddition:(c) Jen, W. S.; Wiener,
J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874. (d)
Xue, M.-X.; Zhang, X.-M.; Gong, L.-Z. Synlett 2008, 691. (e) Liu, Y.-K.;
Liu, H.; Du, W.; Yue, L.; Chen, Y.-C. Chem.;Eur. J. 2008, 14, 9873.
Org. Lett., Vol. 13, No. 17, 2011
4681