Hydrogenative Cyclization of Allenynes
[M+] 397.1712; found 397.1714. IR (KBr): ν = 2965, 2926, 2852,
385–388; b) H.-Y. Jang, M. J. Krische, J. Am. Chem. Soc. 2004,
126, 7875–7880; c) I. G. Jung, J. Seo, S. Y. Choi, Y. K. Chung,
Organometallics 2006, 25, 4240–4242; d) K. T. Sylvester, P. J.
Chirik, J. Am. Chem. Soc. 2009, 131, 8772–8774.
For selected articles for reductive cyclization of allenynes, see:
a) C. H. Oh, S. H. Jung, D. I. Park, J. H. Choi, Tetrahedron
Lett. 2004, 45, 2499–2502; b) C. H. Oh, S. H. Jung, C. Y. Rhim,
Tetrahedron Lett. 2001, 42, 8669–8671.
˜
1598, 1578, 1492, 1453, 1377, 1347, 1292, 1272, 1165, 1094,
1040 cm–1.
(Z)-3-(2-Methylprop-1-enyl)-1-tosyl-4-[(trimethylsilyl)methylene]-
pyrrolidine (7b): The representative experimental procedure was ap-
plied to compound 7a (90 mg, 0.25 mmol) to yield product 7b
(31 mg, 33%). 1H NMR (400 MHz, CDCl3): δ = 7.71 (d, J = 8 Hz,
2 H, aromatic H), 7.34 (d, J = 7.2 Hz, 2 H, aromatic H), 5.23 (s, 1
H, =CHTMS), 4.75 (d, J = 5.6 Hz, 1 H, =CH), 4.07 (d, J =
15.2 Hz, 1 H, CH2-NTs), 3.63 (m, 2 H, CH2-NTs), 3.43 (m, 1 H,
CH2-NTs), 2.54 (t, J = 9.8 Hz, 1 H, allylic H), 2.45 (s, 3 H, CH3Ts),
1.72 (s, 3 H, CH3), 1.60 (s, 3 H, CH3) ppm. 13C NMR (100 MHz,
CDCl3): δ = 155.2, 146.7, 136.5, 132.5, 129.7, 127.8, 122.0, 120.9,
53.0, 51.6, 45.3, 29.9, 26.0, 21.8, 18.5 ppm. HRMS: calcd. for
[3]
[4]
For selected articles for Pd-catalyzed cyclization of allenynes,
see: a) S. Shin, T. V. RajanBabu, J. Am. Chem. Soc. 2001, 123,
8416–8417; b) R. Kumareswaran, S. Shin, I. Gallou, T. V. Ra-
janBabu, J. Org. Chem. 2004, 69, 7157–7170; c) A. K. Gupta,
C. Y. Rhim, C. H. Oh, Tetrahedron Lett. 2005, 46, 2247–2250;
d) C. H. Oh, A. K. Gupta, D. I. Park, N. Kim, Chem. Com-
mun. 2005, 5670–5672; e) V. Pardo-Rodríquez, J. Marco-Martí-
nez, E. Bunuel, D. J. Cárdenas, Org. Lett. 2009, 11, 4548–4551.
For selected articles for Au-catalyzed cyclization of allenynes,
see: a) G. Lemière, V. Gandon, N. Agenet, J.-P. Goddard, A. D.
Kozak, C. Aubert, L. Fensterbank, M. Malacria, Angew.
Chem. Int. Ed. 2006, 45, 7596–7599; b) R. Zriba, V. Gandon,
C. Aubert, L. Fensterbank, M. Malacria, Chem. Eur. J. 2008,
14, 1482–1491; c) C.-Y. Yang, G.-Y. Lin, H.-Y. Liao, S. Datta,
R.-S. Liu, J. Org. Chem. 2008, 73, 4907–4914; d) P. H.-Y.
Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, F. D. To-
ste, J. Am. Chem. Soc. 2008, 130, 4517–4526; e) Á. González-
Gómez, G. Domínguez, J. Pérez-Castells, Eur. J. Org. Chem.
2009, 5057–5062.
For Pt-catalyzed reactions of allenynes, see: a) N. Cadran, K.
Cariou, G. Hervé, C. Aubert, L. Fensterbank, M. Malacria, J.
Marco-Contelles, J. Am. Chem. Soc. 2004, 126, 3408–3409; b)
T. Matsuda, S. Kadowaki, M. Murakami, Helv. Chim. Acta
2006, 89, 1672–1680; for Rh-catalyzed reactions of allenynes,
see: c) K. M. Brummond, H. Chen, P. Sill, L. You, J. Am.
Chem. Soc. 2002, 124, 15186–15187; for Ru-catalyzed reactions
of allenynes, see: d) N. Saito, Y. Tanaka, Y. Sato, Organometal-
lics 2009, 28, 669–671; for Co-catalyzed reactions of allenynes,
see: e) D. Lierena, C. Aubert, M. Malacria, Tetrahedron Lett.
1996, 37, 7027–7030; for Mo-catalyzed reactions of allenynes,
see: f) Q. Shen, G. B. Hammond, J. Am. Chem. Soc. 2002, 124,
6534–6535; for Hg-catalyzed reactions of allenynes, see: g)
S. H. Sim, S. I. Lee, J. Seo, Y. K. Chung, J. Org. Chem. 2007,
72, 9818–9821; for Ga-catalyzed reactions of allenynes, see: h)
S. I. Lee, S. H. Sim, S. M. Kim, K. Kim, Y. K. Chung, J. Org.
Chem. 2006, 71, 7120–7123; for Ir-catalyzed reactions of al-
lenynes, see: i) T. Shibata, S. Kadowaki, M. Hirase, K. Takagi,
Synlett 2003, 573–575; for thermal reactions of allenynes, see:
j) H. Ohno, T. Mizutani, Y. Kadoh, A. Aso, K. Miyamura, N.
Fujii, T. Tanaka, J. Org. Chem. 2007, 72, 4378–4389.
a) H. Lee, M.-S. Jang, J.-T. Hong, H.-Y. Jang, Tetrahedron Lett.
2008, 49, 5785–5788; b) H. Lee, M.-S. Jang, Y.-J. Song, H.-Y.
Jang, Bull. Korean Chem. Soc. 2009, 30, 327–333; c) M. P.
Shinde, X. Wang, E. J. Kang, H.-Y. Jang, Eur. J. Org. Chem.
2009, 6091–6094; d) M.-S. Jang, X. Wang, W.-Y. Jang, H.-Y.
Jang, Organometallics 2009, 28, 4841–4844; e) J.-T. Hong, M.-
J. Kang, H.-Y. Jang, Bull. Korean Chem. Soc. 2010, 31, 2085–
2087; f) J.-T. Hong, X. Wang, J.-H. Kim, K. Kim, H. Yun, H.-
Y. Ja n g , Adv. Synth. Catal. 2010, 352, 2949–2954.
a) K. M. Brummond, H. Chen, B. Mitasev, A. D. Casarez, Org.
Lett. 2004, 6, 2161–2163; b) G. Zhu, Z. Zhang, Org. Lett. 2004,
6, 4041–4044.
For selected articles proposing metallacyclic platinum com-
plexes, see: a) J. Cámpora, P. Palma, E. Carmona, Coord.
Chem. Rev. 1999, 193–195, 207–281; b) R.-X. He, M. Li, X.-Y.
Li, THEOCHEM 2005, 717, 21–32.
C
19H29NO SSi [M+] 363.1688; found 363.1685. IR (KBr): ν =
˜
2
[5]
2955, 2926, 2855, 1933, 1633, 1598, 1452, 1377, 1351, 1249, 1165,
1092, 1031, 872, 840 cm–1.
(Z)-3-Benzylidene-2,2-dimethyl-4-(2-methylprop-1-enyl)-1-tosylpyr-
rolidine (8b): The representative experimental procedure was ap-
plied to compound 8a (98 mg, 0.25 mmol) to yield product 8b
(56 mg, 56%). 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J =
8.4 Hz, 2 H, aromatic H), 7.23 (m, 5 H, aromatic H), 7.09 (d, J =
7.2 Hz, 2 H, aromatic H), 6.20 (s, 1 H, =CHPh), 4.94 (d, J =
8.8 Hz, 1 H, =CH), 3.66 (m, 2 H, CH2-NTs), 2.85 (m, 1 H, allylic
H), 2.40 (s, 3 H, CH3Ts), 1.72 (m, 9 H, gem-dimethyl and CH3),
1.28 (s, 3 H, CH3) ppm. 13C NMR (100 MHz, CDCl3): δ = 150.6,
142.8, 138.1, 137.4, 136.6, 129.4, 128.8, 128.0, 127.4, 126.6, 122.7,
122.5, 68.2, 52.2, 42.4, 30.5, 26.2, 26.0, 21.8, 18.5 ppm. HRMS:
calcd. for C24H29NO2S [M+] 395.1919; found 395.1920. IR (KBr):
[6]
ν = 2974, 2928, 2856, 1599, 1442, 1363, 1338, 1159, 1093, 1026,
˜
815, 739, 704, 670, 582, 550 cm–1.
Dimethyl (E)-3-Benzylidene-4-(2-methylprop-1-enyl)cyclopentane-
1,1-dicarboxylate (9b): The representative experimental procedure
was applied to compound 9a (81 mg, 0.25 mmol) to yield product
1
9b (47 mg, 57%). H NMR (400 MHz, CDCl3): δ = 7.23 (m, 5 H,
aromatic H), 6.09 (d, J = 2.4 Hz, 1 H, =CHPh), 5.03 (d, J = 8.8 Hz,
1 H, =CH), 3.74 (s, 3 H, CO2CH3), 3.72 (s, 3 H, CO2CH3), 3.54
(m, 1 H), 3.40 (d, J = 16.8 Hz, 1 H), 3.20 (dt, J = 2.8, 17.6 Hz, 1
H), 2.57 (dd, J = 7.2, 12.4 Hz, 1 H), 1.85 (t, J = 12.4 Hz, 1 H),1.79
(s, 3 H, CH3), 1.70 (s, 3 H, CH3) ppm. 13C NMR (100 MHz,
CDCl3): δ = 172.3, 172.1, 144.3, 137.9, 134.3, 128.4, 126.3, 125.8,
122.9, 59.4, 53.5, 53.1, 44.5, 40.4, 39.0, 26.1, 18.6 ppm. HRMS:
calcd. for C H O [M+] 328.1675; found 328.1675. IR (KBr): ν =
˜
[7]
20 24
4
3057, 2955, 2928, 1735, 1436, 1268, 1203, 1164, 1064, 738,
699 cm–1.
Supporting Information (see footnote on the first page of this arti-
cle): 2D-NOESY data for compound 1b and computational results.
Acknowledgments
[8]
[9]
This study was supported by the Korean Government, National
Research Foundation of Korea (grant numbers 2010-0029617,
2010-0016079, and 2010-0002396). We also wish to thank the Ko-
rean Basic Science Institute (Deagu) for providing the mass spectra.
[10]
[1] For reviews of reductive cyclization of diynes and allenynes,
see: a) H.-Y. Jang, M. J. Krische, Acc. Chem. Res. 2004, 37,
653–661; b) M. J. Krische, H.-Y. Jang, Comprehensive Organo-
metallic Chemistry III, Elsevier, Oxford, 2006, vol. 10, p. 511.
[2] For selected articles for reductive cyclization of diynes, see: a)
J. W. Madine, X. Wang, R. A. Widenhoefer, Org. Lett. 2001, 3,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Eur. J. Org. Chem. 2011, 3748–3754
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3753