Journal of the American Chemical Society
ARTICLE
Enzyme Assays. Enzyme reactions typically contained enzyme
(3.8 μM) and variable substrate concentration (100 μM for most
substrates; higher concentrations, i.e., 1 mM, were occasionally em-
ployed with boc-protected amino acid derivatives. Exceptions include
substrates 11 and 12, which were used at 20 μM final concentration as
well as substrates 9 and 10, which were used at 70 and 30 μM,
respectively). Several additives (1 M of NaCl, 40 mM of glycylglycine
pH of 9.0, 12 mM of MgCl2, 3 mM of tris(2-carboxyethyl) phosphine
(TCEP), and 1 mM of DMAPP) were added to all reactions. Reactions
were incubated at 37 °C for 24 h in a DNA Engine Peltier thermocycler
(Bio-Rad). Enzyme reactions with full-length precursor peptide con-
tained TruLy1 (28 μM), ATP (0.8 mM), with or without heterocyclase
enzyme TruD (90 nM), and additives as above. Controls were run to
ensure that LynF was active in the presence of TruD and TruLy1 and
vice versa. Products were characterized by MS or diode array (λ = 220
and 280 nm) and fluorescence (λ = 271 nm excitation and 303 nm
emission) HPLC. Reactions assessing the rate of rearrangement of
purified 31 were performed at 37 °C with time points taken at 0 and 8 h
and included the standard additives described above. For descriptions of
specific assays, see Materials and Methods in the Supporting Information.
Phylogenetic Tree Construction. The amino acid sequences of
LynF homologues from the functionally characterized cyanobactin
pathways were aligned using CLUSTALX. Maximum likelihood analysis
with molecular clock PROMLK (PHYLIP) using the bootstrap test
method (1000 replicates) was performed to assess the phylogenetic
relationship between the different homologues. The same tree branches
were also supported using other phylogenetic experiments such as
maximum parsimony (MEGA 4.0) using 1000 bootstrap replicates.
General Methods. ESI-MS and FT-ICR analyses were performed
at the University of Utah Mass Spectrometry and Proteomics core
facility. MALDI-MS analyses were performed on a Micromass MALDI
micro MX instrument (Waters). HPLC separations were performed on
a LaChrom Elite system (Hitachi). NMR spectra were collected on
either 400 or 500 MHz spectrometers (Varian). CD spectra were
collected on a Jasco J-815 spectrometer, and data were plotted in Excel.
’ REFERENCES
(1) Brandt, W.; Br€auer, L.; G€unnewich, N.; Kufka, J.; Rausch, F.;
Schulze, D.; Schulze, E.; Weber, R.; Zakharova, S.; Wessjohann, L.
Phytochemistry 2009, 70, 1758–1775.
(2) Nguyen, U. T.; Goody, R. S.; Alexandrov, K. ChemBioChem
2010, 11, 1194–1201.
(3) Gibbs, R. A. Nat. Chem. Biol. 2005, 1, 7–8.
(4) Casey, P. J.; Seabra, M. C. J. Biol. Chem. 1996, 271, 5289–5292.
(5) Sacchettini, J. C.; Poulter, C. D. Science 1997, 277, 1788–1789.
(6) Edwards, D. J.; Gerwick, W. H. J. Am. Chem. Soc. 2004, 126,
11432–11433.
(7) Reiss, Y.; Goldstein, J. L.; Seabra, M. C.; Casey, P. J.; Brown, M. S.
Cell 1990, 62, 81–88.
(8) Kuzuyama, T.; Noel, J. P.; Richard, S. B. Nature 2005, 435,
983–987.
(9) Gebler, J. C.; Poulter, C. D. Arch. Biochem. Biophys. 1992, 296,
308–313.
(10) Saleh, O.; Haagen, Y.; Seeger, K.; Heide, L. Phytochemistry 2009,
70, 1728–1738.
(11) Donia, M. S.; Ravel, J.; Schmidt, E. W. Nat. Chem. Biol. 2008, 4,
341–343.
(12) Carroll, A. R.; Coll, J. C.; Bourne, D. J.; MacLeod, J. K.; Zabriskie,
T.; Ireland, C. M.; Bowden, B. F. Aust. J. Chem. 1996, 49, 659–667.
(13) Okada, M.; Sato, I.; Cho, S. J.; Iwata, H.; Nishio, T.; Dubnau,
D.; Sakagami, Y. Nat. Chem. Biol. 2005, 1, 23–24.
(14) McIntosh, J. A.; Donia, M. S.; Schmidt, E. W. Nat. Prod. Rep.
2009, 26, 537–559.
(15) Donia, M. S.; Schmidt, E. W. Chem. Biol. 2011, 18, 508–519.
(16) Donia, M. S.; Hathaway, B. J.; Sudek, S.; Haygood, M. G.;
Rosovitz, M. J.; Ravel, J.; Schmidt, E. W. Nat. Chem. Biol. 2006, 2, 729–735.
(17) Leikowski, N.; Fewer, D. P.; Sivonen, K. Appl. Environ. Micro-
biol. 2009, 75, 853–857.
(18) McIntosh, J. A.; Schmidt, E. W. ChemBioChem 2010, 11, 1413–1421.
(19) McIntosh, J. A.; Robertson, C. R.; Vinayak, A.; Satish, N. K.;
Bulaj, G. W.; Schmidt, E. W. J. Am. Chem. Soc. 2010, 132, 15499–15501.
(20) McIntosh, J. A.; Donia, M. S.; Schmidt, E. W. J. Am. Chem. Soc.
2010, 132, 4089–4091.
(21) Lee, J.; McIntosh, J. A.; Hathaway, B. J.; Schmidt, E. W. J. Am.
Chem. Soc. 2009, 131, 2122–2214.
’ ASSOCIATED CONTENT
(22) Quillinan, A. J.; Scheinmann, F. J. Chem. Soc. D 1971, 966–967.
(23) Tisdale, E. J.; Slobodov, I.; Theodorakis, E. A. Org. Biomol.
Chem. 2003, 1, 4418–4422.
S
Supporting Information. Additional mass spectrometry,
b
NMR, kinetic, protein purification, sequence, and substrate data,
and full methods. This material is available free of charge via the
(24) Nicolaou, K. C.; Li, J. Angew. Chem., Int. Ed. 2001, 40, 4264–4268.
(25) Jost, M.; Zocher, G.; Tarcz, S.; Matuscheck, M.; Xie, X.; Li,
S. M.; Stehle, T. J. Am. Chem. Soc. 2010, 132, 17849–17858.
(26) Haagen, Y.; Uns€old, I.; Westrich, L.; Gust, B.; Richard, S. B.;
Noel, J. P.; Heide, L. FEBS Lett. 2007, 581, 2889–2893.
(27) Ding, Y.; de Wet, J. R.; Cavalcoli, J.; Li, S.; Greshock, T. J.;
Miller, K. A.; Finefield, J. M.; Sunderhaus, J. D.; McAfoos, T. J.;
Tsukamoto, S.; Williams, R. M.; Sherman, D. H. J. Am. Chem. Soc.
2010, 132, 12733–12740.
’ AUTHOR INFORMATION
Corresponding Author
Present Addresses
§Department of Bioengineering and Therapeutic Sciences and
California Institute for Quantitative Biosciences, University of
California, San Francisco, San Francisco, CA 94158
(28) Schultz, A. W.; Lewis, C. A.; Luzung, M. R.; Baran, P. S.; Moore,
B. S. J. Nat. Prod. 2010, 73, 373–377.
(29) Balibar, C. J.; Howard-Jones, A. R.; Walsh, C. T. Nat. Chem.
Biol. 2007, 3, 584–592.
(30) Pojer, F.; Wemakor, E.; Kammerer, B.; Chen, H.; Walsh,
C. T.; Li, S. M.; Heide, L. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
2316–2321.
(31) Oman, T. J.; van der Donk, W. A. Nat. Chem. Biol. 2010,
6, 9–18.
(32) Murakami, M.; Itou, Y.; Ishida, K.; Shin, H. J. J. Nat. Prod. 1999,
62, 725–755.
(33) Ahmed, F.; Ohtsuki, T.; Aida, W.; Ishibashi, M. J. Nat. Prod.
2008, 71, 1963–1966.
’ ACKNOWLEDGMENT
This work was supported by NIH GM071425. We thank C. Dale
Poulter, Jeffrey Rudolph, Gary E. Keck, and John Heemstra for
helpful discussions; Chad Nelson, Krishna Parsawar, and Jim Muller
for mass spectrometry assistance; Scott Endicott and Robert
Schackmann for peptide synthesis; Seth Lilavivat for circular
dichroism assistance; and Jack Skalicky, Jay Olsen, Dai Tianero,
and Zhenjian Lin for NMR assistance. We dedicate this paper to the
late Prof. D. John Faulkner for his pioneering work on the Claisen
rearrangement and marine natural products.
(34) Gebler, J. C.; Woodside, A. B.; Poulter, C. D. J. Am. Chem. Soc.
1992, 114, 7354–7360.
(35) Donia, M. S.; Schmidt, E. W. Chem. Biol. 2011, 18, 508–519.
13704
dx.doi.org/10.1021/ja205458h |J. Am. Chem. Soc. 2011, 133, 13698–13705