Journal of the American Chemical Society
ARTICLE
(Table 7, entry 3). No sulfoxide products were detected when
the reactions were carried out in the absence of light but in the
presence of MOF 6 or L6 (Table 7, entries 4 and 5). O2 was
shown to be the oxidizing agent since no conversion of sulfide
to sulfoxide was observed when the reaction was carried
out under N2 protection (Table 7, entries 6 and 7). The PXRD
pattern of the MOF 6 catalyst after the reaction was identical to
that of the pristine MOF 6, indicating its stability under the
reaction conditions (Figure 4).
(9) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011,
40, 102.
(10) Wasielewski, M. R. Acc. Chem. Res. 2009, 42, 1910.
(11) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc.
Chem. Res. 2005, 38, 217.
(12) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004,
43, 2334.
(13) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.
(14) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.
(15) Tanabe, K. K.; Cohen, S. M. Chem. Soc. Rev. 2011, 40, 498.
(16) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;
O’Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
(17) Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009,
38, 1294.
’ CONCLUSIONS
We have successfully incorporated Ir, Re, and Ru complexes
into the UiO framework by a mix-and-match strategy. These
stable and porous metal complex-derivatized doped MOFs are
highly effective catalysts for a range of reactions related to solar
energy utilization. MOFs 1ꢀ3 were used in catalytic water
oxidation, while MOF 4 catalyzed photochemical CO2 reduc-
tion. MOFs 5 and 6 were used in three photocatalytic organic
tranformations: aza-Henry reaction, aerobic amine coupling, and
aerobic thioanisole oxidation. Stability of these MOF catalysts
under the reaction conditions was verified by comparing PXRD
patterns before and after catalysis. The heterogeneous nature of
these catalysts can not only facilitate catalyst recycling and reuse
but also provide mechanistic insights into the reactions, as in the
case of CO2 reduction using MOF 4. The modular nature of this
synthetic approach should allow further fine tuning and optimi-
zation to lead to highly active heterogeneous catalysts in solar
energy utilization.
(18) Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009,
38, 1477.
(19) Xiang, S.-C.; Zhang, Z.; Zhao, C.-G.; Hong, K.; Zhao, X.; Ding,
D.-R.; Xie, M.-H.; Wu, C.-D.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen,
B. Nat. Commun. 2011, 2, 204.
(20) Allendorf, M. D.; Houk, R. J.; Andruszkiewicz, L.; Talin, A. A.;
Pikarsky, J.; Choudhury, A.; Gall, K. A.; Hesketh, P. J. J. Am. Chem. Soc.
2008, 130, 14404.
(21) Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong,
M.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334.
(22) Xie, Z.; Ma, L.; deKrafft, K. E.; Jin, A.; Lin, W. J. Am. Chem. Soc.
2010, 132, 922.
(23) Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.
(24) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511.
(25) deKrafft, K. E.; Xie, Z.; Cao, G.; Tran, S.; Ma, L.; Zhou, O. Z.;
Lin, W. Angew. Chem., Int. Ed. 2009, 48, 9901.
(26) Della Rocca, J.; Lin, W. B. Eur. J. Inorg. Chem. 2010, 24, 3725.
(27) Liu, D.; Huxford, R. C.; Lin, W. Angew. Chem., Int. Ed. 2011,
50, 3696.
’ ASSOCIATED CONTENT
(28) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati,
T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.;
Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.;
Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.
(29) Lin, W.; Rieter, W. J.; Taylor, K. M. Angew. Chem., Int. Ed. 2009,
48, 650.
S
Supporting Information. Detailed experimental proce-
b
dures and characterization data. This material is available free of
(30) Rieter, W. J.; Pott, K. M.; Taylor, K. M.; Lin, W. J. Am. Chem.
Soc. 2008, 130, 11584.
’ AUTHOR INFORMATION
(31) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248.
(32) Ma, L. F., J. M.; Abney, C.; Lin, W. Nat. Chem. 2010, 2, 838.
(33) Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am.
Chem. Soc. 2010, 132, 15390.
Corresponding Author
(34) Cho, S. H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-
Schmitt, T. E. Chem. Commun. 2006, 2563.
(35) Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park,
S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524.
(36) Kent, C. A.; Mehl, B. P.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.;
Lin, W. J. Am. Chem. Soc. 2010, 132, 12767.
’ ACKNOWLEDGMENT
We acknowledge sole financial support from the UNC EFRC:
Solar Fuels and Next Generation Photovoltaics, and Energy
Frontier Research Center funded by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences
(DE-SC0001011).
(37) Duan, L.; Fischer, A.; Xu, Y.; Sun, L. J. Am. Chem. Soc. 2009,
131, 10397.
(38) Zong, R.; Thummel, R. P. J. Am. Chem. Soc. 2005, 127, 12802.
(39) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J.
J. Am. Chem. Soc. 2008, 130, 16462.
(40) Tseng, H. W.; Zong, R.; Muckerman, J. T.; Thummel, R. Inorg.
Chem. 2008, 47, 11763.
(41) Ellis, W. C.; McDaniel, N. D.; Bernhard, S.; Collins, T. J. J. Am.
Chem. Soc. 2010, 132, 10990.
(42) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S.
J. Am. Chem. Soc. 2008, 130, 210.
(43) Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.;
Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2009,
131, 8730.
(44) Blakemore, J. D.; Schley, N. D.; Balcells, D.; Hull, J. F.; Olack,
G. W.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H.
J. Am. Chem. Soc. 2010, 132, 16017.
’ REFERENCES
(1) Hammarstr€om, L.; Hammes-Schiffer, S. Acc. Chem. Res. 2009,
42, 1859.
(2) Ciamician, G. Science 1912, 36, 385.
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
(4) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009,
42, 1890.
(5) Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.;
Patrocinio, A. O. v. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer,
T. J. Acc. Chem. Res. 2009, 42, 1954.
(6) Esswein, M. J.; Nocera, D. G. Chem. Rev. 2007, 107, 4022.
(7) Dubois, M. R.; Dubois, D. L. Acc. Chem. Res. 2009, 42, 1974.
(8) Morris, A. J.; Meyer, G. J.; Fujita, E. Acc. Chem. Res. 2009,
42, 1983.
13453
dx.doi.org/10.1021/ja203564w |J. Am. Chem. Soc. 2011, 133, 13445–13454