Macromolecules
ARTICLE
Haeussler, M.; Dong, Y.; Sung, H. H. Y.; Williams, I. D.; Wong, G. K. L.;
Tang, B. Z. Macromolecules 2007, 40, 2308–2317. (h) Huang, F.; Tian,
Y.; Chen, C.-Y.; Cheng, Y.-J.; Young, A. C.; Jen, A. K.-Y. J. Phys. Chem. C
2007, 111, 10673–10681. (i) eXPRESS Polym. Lett. 2007, 1, 482–487.
(j) Manoj, N.; Muhammad, H.; Xu, Q.; Valiyaveettil, S. Macromolecules
2008, 41, 8473–8482. (k) Zhang, H.; Guo, E.; Zhang, X.; Yang, W.
J. Polym. Sci., A Polym. Chem. 2010, 48, 463–470. (l) Hegde, P. K.;
Adhikari, A. V.; Manjunatha, M. G.; Sandeep, C. S. S.; Philip, R. J. Appl.
Polym. Sci. 2010, 117, 2641–2650. (m) Huang, X.; Shi, Q.; Chen, W.-Q.;
Zhu, C.; Zhou, W.; Zhao, Z.; Duan, X.-M.; Zhan, X. Macromolecules
2010, 43, 9620–9626. (n) Wang, H.; Li, Z.; Shao, P.; Qin, J.; Huang, Z.-L.
J. Phys. Chem. B 2010, 114, 22–27. (o) Goudreault, T.; He, Z.; Guo, Y.;
Ho, C.-L.; Zhan, H.; Wang, Q.; Ho, K. Y.-F.; Wong, K.-L.; Fortin, D.;
Yao, B.; Xie, Z.; Wang, L.; Kwok, W.-M.; Harvey, P. D.; Wong, W.-Y.
Macromolecules 2010, 43, 7936–7949. (p) Jiang, Y.-H.; Wang, Y.-C.;
Yang, J.-B.; Hua, J.-L.; Wang, B.; Qian, S.-Q.; Tian, H. J. Polym. Sci., Part
A: Polym. Chem. 2011, 49, 1830–1839.
(27) ManTech SRS Technologies. Technical bulletin, “LaRC-CP1 and
com.
(28) Gosh, M. K., Mittal, K. L. Polyimides: Fundamentals and
Applications; Marcel Dekker: New York, 1996.
(29) Rogers, J. E.; Cooper, T. M.; Fleitz, P. A.; Glass, D. J.; McLean,
D. G. J. Phys. Chem. A 2002, 106, 10108–10115.
(30) Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991–1024.
(31) For a similar femtosecond 2PA cross-section measurement
setup, see: He, G. S.; Swiatkiewicz, J.; Jiang, Y.; Prasad, P. N.; Reinhardt,
B. A.; Tan, L.-S.; Kannan, R. J. Phys. Chem. A 2000, 104, 4805–4810.
(32) He, G. S.; Yuan, L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.;
Brott, L. L.; Clarson, S. J.; Reinhardt, B. A. J. Opt. Soc. Am. B 1997,
14, 1079–1087.
(33) He, G. S.;Lin, T.-C.;Dai, J.;Prasad, P. N.;Kannan, R.;Dombroskie,
A, G.; Vaia, R. A.; Tan, L.-S. J. Chem. Phys. 2004, 120, 5275–5284.
(34) Baev, A.; Salek, P.; Gel’mukhanov, F.; Aagren, H. J. Phys. Chem.
B 2006, 110, 5379–5385.
(12) Hergenrother, P. M. High Perform. Polym. 2003, 15, 3–45.
(13) Sroog, C. E. Prog. Polym. Sci. 1991, 16, 561–694.
(35) Das, G. P.; Yeates, A. T.; Dudis, D. S. Int. J. Quantum Chem.
2000, 80, 1039–1042.
(14) (a) de Abajo, J.; de la Campa, J. G.; Lozano, A. E.; Espeso, J.;
Garcia, C. Macromol. Symp. 2003, 199, 293–305. (b) Al-Masri, M.;
Fritsch, D.; Kricheldorf, H. R. Macromolecules 2000, 33, 7127–7135.
(c) Fang, J.; Kita, H.; Okamoto, K.-i. Macromolecules 2000, 33, 4639–4646.
(15) Fukukawa, K.-i.; Ueda, M. J. Photopolym. Sci. 2009, 22, 761–771.
(16) Wong, C. P. Polymers for Electronic & Photonic Applications;
Academic Press: London, 1993.
(17) (a) Kim, T.-D.; Lee, K.-S.; Lee, G. U.; Kim, O.-K. Polymer 2000,
41, 5237–5245. (b) Liu, Y.-G.; Sui, Y.; Yin, J.; Gao, J.; Zhu, Z.-K.; Huang,
D.-Y.; Wang, Z.-G. J. Appl. Polym. Sci. 2000, 76, 290–295. (c) Lu, J.; Yin,
J. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 303–312. (d) Park, S. K.;
Do, J. Y.; Ju, J. J.; Park, S.; Kim, M.; Lee, M.-H. React. Funct. Polym. 2006,
66, 974–983. (e) Qiu, F.; Da, Z.; Yang, D.; Cao, G.; Li, P. Dyes Pigm.
2008, 77, 564–569.
(36) For the homopolyimide (parent) containing AF240 moiety in
every repeat unit, it is designated as AF349P. For the designation of the
copolyimides, the central 2-digit number refers to the mol % of AF240
component in the copolymer; e.g., in AF349P-10CP2, 10 mol% of dye is
formally present in the polymer chain.
(37) The film density of CP2 is reported to be 1.43 g/cm3. See:
Espuche, E.; David, L.; Afeld, J. L.; Compton, J. M.; Kranbuehl, D. E.
Macromol. Symp. 2005, 228, 155–165.
(38) March, J. Advanced Organic Chemistry: Reactions, Mechanisms &
Structures, 4th ed.; Wiley: New York, 1992; p 280.
(39) (a) Nguyen, K. A.; Rogers, J. E.; Slagle, J. E.; Day, P. N.; Kannan,
R.; Tan, L.-S.; Fleitz, P. A.; Pachter, R. J. Phys. Chem. A 2006, 110,
13172–13182. (b) Nguyen, K. A.; Day, P. N.; Pachter, R. Theor. Chem.
Acc. 2008, 120, 167–175.
(18) (a) Jen, A. K. Y.; Liu, Y.; Zheng, L.; Liu, S.; Drost, K. J.; Zhang,
Y.; Dalton, L. R. Adv. Mater. 1999, 11, 452–455. (b) Chen, T.-A.; Jen,
A. K. Y.; Cai, Y. Macromolecules 1996, 29, 535–539. (c) Chen, T.-A.; Jen,
A. K. Y.; Cai, Y. J. Am. Chem. Soc. 1995, 117 (27), 7295–7296.
(19) (a) Sekkat, Z.; Wood, J.; Knoll, W.; Volksen, W.; Miller, R. D.;
Knoesen, A. J. Opt. Soc. Am. B 1997, 14, 829–833. (b) Chen, J. P.;
Lagugne-Labarthet, F.; Natansohn, A.; Rochon, P. Macromolecules 1999,
32, 8572–8579. (c) Si, J.; Mitsuyu, T.; Ye, P.; Li, Zh.; Shen, Y.; Hirao, K.
Opt. Commun. 1998, 147, 313–316. (d) Meng, X.; Natansohn, A.;
Rochon, P. Polymer 1997, 38, 2677–2682. (e) Sava, I.; Resmerita, A.-M.;
Lisa, G.; Damian, V.; Hurduc, N. Polymer 2008, 49, 1475–1482.
(20) Schab-Balcerzak, E.; Siwy, M.; Kawalec, M.; Sobolewska, A.;
Chamera, A.; Miniewicz, A. J. Phys. Chem A 2009, 113, 8765–8780.
(21) Two-photon properties were reported only recently for certain
mixed aliphaticꢀaromatic poly(ester-imides). See: Siwy, M.; Jarzabek, B.;
Switkowski, K.; Pura, B.; Schab-Balcerzak, E. Polym. J. 2008, 40, 813–824.
(22) Ehrlich, J. E.; Wu, X.-L.; Lee, I.-Y. S.; Hu, Z.-Y.; Rockel, H.;
Marder, S. R.; Beljonne, D.; Bredas, J.-L. Opt. Lett. 1997, 22, 1843–1845.
(23) (a) Sutherland, R. L.; Brant, M. C.; Heinrichs, J.; Rogers, J. E.;
Slagle, J. E.; McLean, D. G.; Fleitz, P. A. J. Opt. Soc. Am. B 2005, 22,
1939–1948.(b) Sutherland, R. L.; McLean, D. G.; Brant, M. C.; Rogers,
J. E.; Fleitz, P. A.; Urbas, A. M., Proc. SPIE—Int. Soc. Opt. Eng. 2006,
6330 (Nonlinear Optical Transmission and Multiphoton Processes in
Organics IV), 633006/1ꢀ633006/15
(40) Li, C.; Yang, K.; Feng, Y.; Su, X.; Yang, J.; Jin, X.; Shui, M.;
Wang, Y.; Zhang, X.; Song, Y.; Xu, H. J. Phys. Chem. B 2009, 113, 15730–
15733.
(41) Swiatkiewicz, J.; Prasad, P. N.; Reinhardt, B. A. Opt. Commun.
1998, 157, 135–138.
(42) For multiphoton applications such as multiphoton fluorescence
quenching for chemical sensing, which requires conjugated polymer to
be sufficiently high molecular weight, the two-photon cross-sections are
reported on the per entire-chain basis. See for example: Narayanan, A.;
Varnavski, O. P.; Swager, T. M.; Goodson, T., III J. Phys. Chem. C 2008,
112, 881–884.
(43) (a) Oelgemoller, M.; Griesbeck, A. G. J. Photochem. Photobiol., C
2002, 3, 109–127. (b) Griesbeck, A. G.; Schieffer, S. Photochem. Photobiol.
Sci. 2003, 2, 113–117. (c) Griesbeck, A. G.; Gorner, H. J. Photochem.
Photobiol., A 1999, 129, 111–119.
(44) Li, W.; Fox, M. A. J. Phys. Chem. B 1997, 101, 11068–11076.
(45) Freilich, S. C. Macromolecules 1987, 20, 973–978.
(46) (a) Li, Y.; Wang, Z. Acta Crystallogr., Sect. E: Struct. Rep. Online
2008, E64 (2), o388/1–o388/8. (b) Naitoh, K.; Ishii, K.; Yamaoka, T.;
Omote, T. Polym. Adv. Technol. 1993, 4, 294–301.
(47) Hillisch, A.; Lorenz, M.; Diekmann, S. Curr. Opin. Struct. Biol.
2001, 11, 201–207.
(48) Newkome, G. R.; Paudler, W. W. Contemporary Heterocyclic
Chemistry; Wiley-Interscience: New York, 1982; Chapter 4.
(49) Rogers, J. E.;Slagle, J. E.; McLean, D. G.; Sutherland, R. L.; Brant,
M. C.; Heinrichs, J.; Jakubiak, R.; Kannan, R.; Tan, L.-S.; Fleitz, P. A.
J. Phys. Chem. A 2007, 111, 1899–1906.
(24) (a) Hasegawa, M.; Horie, K. Prog. Polym. Sci. 2001, 26, 259.
(b) Hrdloviꢀc, P. Polym. News 2004, 29, 50–60.
(25) Kannan, R.;He,G. S.;Yuan, L.;Xu, F.;Prasad, P.N.;Dombroskie,
A. G.; Reinhardt, B. A.; Baur, J. W.; Vaia, R. A.; Tan, L.-S. Chem. Mater.
2001, 13, 1896–1904.
(26) CP2 is shortened from the original acronym, LaRC-CP2, which
originated from a NASA research program on colorless polyimides (CP)
for coating applications, where optical transparency was critical: (a) St.
Clair, A. K.; St. Clair, T. L.; Shevket, K. I. Polym. Mater. Sci. Eng. 1984,
51, 62–66. (b) Miner, G. A.; Stoakley, D. M.; St. Clair, A. K.; Gierow,
P. A.; Bates, K. Polym. Mater. Sci. Eng. 1997, 76, 381–382.
7206
dx.doi.org/10.1021/ma201407g |Macromolecules 2011, 44, 7194–7206