J.-W. Xie et al. / Tetrahedron Letters 52 (2011) 2379–2382
2381
O
References and notes
R
1. (a) Nakanishi, K. Natural Products Chemistry; Kodansha Ltd., Academic: New
York, 1974; (b) Meyers, A. I. Heterocycles in Organic Synthesis; John Wiley &
Sons: New York, 1974; (c) Dean, F. M. In Advances in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic: New York, 1982. Vol. 30, pp 167–238; (d)
Vernin, G. The Chemistry of Heterocyclic FlaVoring and Aroma Compounds; Ellis
Horwood: Chichester, 1982; (e) Danheiser, R. L.; Stoner, E. J.; Kojama, H.;
Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407; (f) Fraga, B. M.
Nat. Prod. Rep. 1992, 9, 217; (g) Merrit, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9,
243.
H3CO
+
O
O
120 mol% NaOAc
20 mol% TBAB
NO2
O
R
H2O, 70
°C, 3h
Br
2a
O2N
product 3 yield%
1h-1i
O
R
CH3 3ha
OEt 3ia
65
53
2. (a) Zheng, J.-C.; Zhu, Y.-C.; Sun, X.-L.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2008, 73,
6909; For the first example of dihydrofuran synthesis via sulfur ylide, see: (b)
Payne, G. B. J. Org. Chem. 1967, 35, 3351.
Scheme 2. The reactions of acyclic 1,3-dicarbonyl compounds 1h–1i with 2a.
3. Caló, V.; Scordari, F.; Nacci, A.; Schingaro, E.; D’Accolti, L.; Monopoli, A. J. Org.
Chem. 2003, 68, 4406.
4. Xing, C.; Zhu, S. J. Org. Chem. 2004, 69, 6486.
5. Arai, S.; Nakayama, K.; Suzuki, Y.; Hatano, K.; Shioiri, T. Tetrahedron Lett. 1998,
39, 9739.
6. (a) Jiang, Y. I.; Ma, D. Tetrahedron: Asymmetry 2002, 13, 1033; (b) Yang, Z.; Fan,
M.; Mu, R.; Liu, W.; Liang, Y. Tetradedron 2005, 61, 9140; (c) Bernard, A. M.;
Frongia, A.; Piras, P. P.; Secci, F.; Spiga, M. Org. Lett. 2005, 7, 4565.
7. (a) Lee, P. H.; Kim, J. S.; Kim, S. Tetrahedron Lett. 1993, 34, 7583; (b) Nakajima,
T.; Segi, M.; Mituoka, T.; Fukute, Y.; Honda, M.; Naitou, K. Tetrahedron Lett.
1995, 36, 1667; (c) Pohmakotr, M.; Takampon, A.; Ratchataphusit, J.
Tetrahedron 1996, 52, 7149; (d) Yadav, V. K.; Balamurugan, R. Org. Lett. 2001,
3, 2717.
8. For less recent examples of synthesis of dihydrofurans using cyclopropanes or
with involvement of cyclopropanes, see: (a) Alonso, M. E.; Morales, A. J. Org.
Chem. 1980, 45, 4530; Saigo, K.; Kurihara, H.; Miura, H.; Hongu, A.; Kubota, N.;
Nohira, H.; Hasegawa, M. Synth. Commun. 1984, 14, 787; (c) Melot, J. M.; Texier-
Boullet, F.; Foucaud, A. Tetrahedron 1988, 44, 2215.
O
O
H
NO2
H
O
9. (a) Aso, M.; Ojida, A.; Yang, G.; Cha, O. J.; Osawa, E.; Kamematsu, K. J. Org. Chem.
1993, 58, 3960; (b) Antonioletti, R.; Righi, G.; Oliveri, L.; Bovicelli, P. Tetrahedron
Lett. 2000, 41, 10127; (c) Antonioletti, R.; Bovicelli, P.; Malancona, S.
Tetrahedron 2002, 58, 589; (d) Lee, Y. R.; Suk, J. Y. Tetrahedron 2002, 58, 2359.
10. (a) Ichikawa, K.; Uemura, S. J. Org. Chem. 1967, 32, 493; (b) Nishino, I. Bull.
Chem. Soc. Jpn. 1985, 58, 1922; (c) Yoshida, J.; Yano, S.; Ozawa, T.; Kawabata, N.
J. Org. Chem. 1985, 50, 3467; (d) Vinogradov, M. G.; Kondorsky, A. E.; Nikishin,
G. I. Synthesis 1988, 60; (e) Tategami, S.; Yamada, T.; Nishino, H.; Korp, J. D.;
Kurosawa, K. Tetrahedron Lett. 1990, 31, 6371; (f) Iqbal, J.; Bhatia, B.; Nayyar, N.
K. Tetrahedron 1991, 47, 6457; (g) Baciocchi, E.; Ruzziconi, R. J. Org. Chem. 1991,
56, 4772; (h) Yamada, T.; Iwahara, Y.; Nishino, H.; Korp, J. D.; Kurosawa, K. J.
Chem. Soc., Perkin Trans. 1 1993, 609; (i) McDonald, F. E.; Connolly, C. B.;
Gleason, M. M.; Towne, T. B.; Treiber, K. D. J. Org. Chem. 1993, 58, 6952; (l) Nair,
V.; Mathew, J.; Radhakrishnan, K. V. J. Chem. Soc., Perkin Trans. 1 1996, 1487;
(m) Roy, S. C.; Mandal, P. K. Tetrahedron 1996, 52, 2193; (n) Nguyen, V.-H.;
Nishino, H.; Kurosawa, K. Synthesis 1997, 899; (o) Alonso, I.; Carretero, J. C.;
Garrido, J. L.; Magro, V.; Pedregal, C. J. Org. Chem. 1997, 62, 5682; (p) Garrido, J.
L.; Alonso, I.; Carretero, J. C. J. Org. Chem. 1998, 63, 9406; (q) Garzino, F.; Meou,
A.; Brun, P. Tetrahedron Lett. 2000, 41, 9803; (r) Lee, Y. R.; Kim, B. S.; Kim, D. H.
Tetrahedron 2000, 56, 8845; (s) Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J.
S. J. Am. Chem. Soc. 2001, 123, 12095.
Figure 3. Molecular structure of 3fa.
a
-bromonitroalkene 1a, good yield was also achieved with 5,5-di-
methyl-1,3-cyclohexanedione (entry 6). The reactions of acyclic
1,3-dicarbonyl compounds 1h–1i with 2a also found to be success-
ful, and tetrasubstituted 2,3-dihydrofurans 3ha–3ia were obtained
with moderate yield (Scheme 2).
The stereochemistries of the products 3 are assigned on the ba-
sis of specific coupling constants (J) and HPLC in comparison with
the literature data,21 then the stereochemistries of 3 were estab-
lished unambiguously by X-ray analysis of 3fa (Fig. 3). It confirms
the trans configuration as illustrated by the ORTEP diagram de-
picted in Figure 3.22
11. Zhong, C.; Liao, T.; Tuguldur, O.; Shi, X. Org. Lett. 2010, 12, 2064.
12. Xie, J.-W.; Wang, Z.; Yang, W.-J.; Kong, L.-C.; Xu, D.-C. Org. Biomol. Chem. 2009,
7, 4352.
In conclusion, an efficient method for the synthesis of function-
alized 2,3-dihydrofurans by domino reaction of 1,3-dicarbonyl
compounds with a-bromonitroalkenes has been investigated. The
13. Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2007, 9, 1125;
Ayyagari, N.; Jose, D.; Mobin, S. M.; Namboothiri, I. N. N. Tetrahedron Lett. 2011,
52, 258.
14. Fan, L.-P.; Li, P.; Li, X.-S.; Xu, D.-C.; Ge, M.-M.; Zhu, W.-D.; Xie, J.-W. J. Org. Chem.
2010, 75, 8716.
domino reaction can proceed smoothly in an environmentally be-
nign solvent–water and provides pure functionalized tricyclic
2,3-dihydrofurans, bicyclic 2,3-dihydrofurans, and tetrasubstituted
2,3-dihydrofurans with excellent diastereoselectivity (only trans
isomers) in moderate to excellent yield. The reaction’s scope
proved to be quite broad. Notably, pure tricyclic 2,3-dihydrofurans
were easily obtained in a simple procedures. This novel methodol-
ogy should be of great interest for natural product synthesis and
pharmaceutical synthesis for the mild reaction conditions.
15. Rueping, M.; Parra, A.; Uria, U.; Besseliévre, F.; Merino, E. Org. Lett. 2010, 12,
5680.
16. (a) Jiménez-González, C.; Curzons, A. D.; Constable, D. J. C.; Cunningham, V. L.
Int. J. Life Cycle Assess. 2004, 9, 114; (b) Jiménez-González, C.; Curzons, A. D.;
Constable, D. J. C.; Cunningham, V. L. Clean Technol. Environ. Policy 2005, 7, 42.
17. Clean Solvents: Alternative Media for Chemical Reactions and Processing, ACS
Symposium Series 819, Abraham, M. A. and Moens, L. ed., Washington, D.C.,
2002.
18. (a)For general references see: Organic Synthesis in Water; Grieco, P. A., Ed.;
Springer: NY, 1997; (b)Organic Reactions in Water; Lindstroem, U. M., Ed.;
Blackwell Publishing Ltd.: Oxford, UK, 2007; (c) Hailes, H. C. Org. Process Res.
Dev. 2007, 11, 114.
Acknowledgments
19. For recent reviews on other environmentally benign solvents see: (a) Rayner, C.
M. Org. Process Res. Dev. 2007, 11, 121; (b) Oakes, R. S.; Clifford, A. A.; Rayner, C.
M. J. Chem. Soc., Perkin Trans. 1 2001, 9, 917; (c) Habermann, J.; Ponzi, S.; Ley, S.
V. Mini-Rev. Org. Chem. 2005, 2, 125; (d) Sheldon, R. Chem. Commun. 2001,
2399.
We are grateful for the financial support from the National Nat-
ural Science Foundation of China (20902083) and the Natural Sci-
ence Foundation of Zhejiang Province, China (Y4090082).
20. Typical experimental procedure for the domino reaction of 1,3-dicarbonyl
compounds with
(0.2 mmol, 1 equiv),
a
-bromonitroalkenes 2. Method A: 4-hydroxylcoumarin 1a
-bromonitroalkene 2a (0.30 mmol, 1.5 equiv), NaOAc
a
(20 mg, 0.24 mmol) and TBAB (12 mg, 0.024 mol) were stirred at room
temperature in H2O (2 mL) for 72 h, then extracted with ethyl acetate and
dried with Na2SO4, the solvent was removed and flash chromatography on
silica gel (10% ethyl acetate/petroleum ether) or recrystallized from ethanol
Supplementary data
Supplementary data associated with this article can be found, in
gave 3aa as
a white solid. Method B: 4-hydroxylcoumarin 1a (0.2 mmol,