Journal of the American Chemical Society
COMMUNICATION
Scheme 5. S-to-O Silylative Switch Amidation Mechanism
agent. Experiments to achieve this forward-looking goal are in
progress.
footnote 24 within that manuscript, false coupling results obtained with
unpurified and unsparged thiol acid were assumed to be caused by
impurities and/or incomplete formation of the thionoester.
(5) (a) Glass, R. S. Sci. Synth. 2005, 22, 85. (b) Yeo, S. K.; Choi, B. G.;
Kim, J. D.; Lee, J. H. Bull. Korean Chem. Soc. 2002, 23, 1029. (c) Castro,
E. A. Chem. Rev. 1999, 99, 3505.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, syn-
b
(6) Tautomerization of an S-silylthioester to an O-silylthionoester
functions as a novel in situ activation of the carboxyl function for reaction
with nucleophiles. Therefore, any synthetic method that can directly
generate an S-silylthioester under mild reaction conditions can serve as
an entry to the O-silylthionoester.
thesis and characterization of all new compounds, and scanned
spectra. This material is available free of charge via the Internet at
(7) Thiobenzoic acid: 1H NMR: δ 7.91 (Hortho, dd, J = 1.2, 8.4 Hz,
2H), 7.61 (Hpara, dt, J = 1.2, 8.0 Hz, 1H), 7.47 (Hmeta, t, J = 7.8 Hz, 2H),
4.58 (SꢀH, br s, 1H). IR: 2567(sh), 1660, 1594, 1580 cmꢀ1. O-
’ AUTHOR INFORMATION
Corresponding Author
1
Trimethylsilylthionoester (see ref 12h): H NMR: δ 8.21 (Hortho, d,
J = 8.4 Hz, 2H), 7.54 (Hpara, t, J = 7.2 Hz, 1H), 7.37 (Hmeta, t, J = 7.8 Hz,
2H), 0.5 (Me3Si, s, 9H). 13C NMR: δ 212.6 (SdCꢀO), 139.6, 133.0,
128.9, 128.1, 0.3.
Present Addresses
†Department of Chemistry, University of Chicago, 5735 South
Ellis Avenue, Chicago, IL 60637.
(8) From the recent focus on reagent-based methods to activate thiol
acids for reaction with amines to give amides (see refs 10 and 12 in this
manuscript), one might infer that thiol acids are unable to directly
acylate amines. Examples of amine acylation by thiol acids without
special activation have appeared in the literature for decades (see:
Cronyn, M. W.; Jiu, J. J. Am. Chem. Soc. 1952, 74, 4726. Sheehan,
J. C.; Johnson, D. A. J. Am. Chem. Soc. 1952, 74, 4726. Hawkins, P. J.;
Tarbell, D. S.; Noble, P. J. Am. Chem. Soc. 1953, 75, 4462. Hirabayashi,
Y.; Mizuta, M.; Kojima, M.; Horio, Y.; Ishihara, H. Bull. Chem. Soc. Jpn.
1971, 44, 791. ). However, some caution in interpreting the published
results is appropriate, since the direct reaction of thioacids with amines is
highly dependent on the purity of the thioacid.
’ ACKNOWLEDGMENT
This project originated with partial funding from the National
Institute of General Medical Sciences, DHHS, through Grant
GM066153. We acknowledge the exceptionally helpful advice of
Dr. Hao Li and Dr. Kasinath Sana and the critical insights and
thoughtful control experiments offered by Dr. Angus Lamar.
’ REFERENCES
(9) Liu, R.; Orgel, L. E. Nature 1997, 389, 52.
(1) (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606. (b)
Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. (c) Al-Zoubi, R. M.; Marion,
O.; Hall, D. G. Angew. Chem., Int. Ed. 2008, 47, 2876. (d) Maki, T.;
Ishihara, K.; Yamamoto, H. Tetrahedron 2007, 63, 8645. (e) Bode, J. W.
Curr. Opin. Drug Discovery Dev. 2006, 9, 765. (f) Tam, J. P.; Xu, J.; Eom,
K. D. Biopolymers 2001, 60, 194.
(2) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.;
Wells, A.; Zaksh, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
(3) (a) Martel, B.; Duffaut, N. C. R. Acad. Sci. Paris, Ser. IIc 2: Sci.
Chim. 1966, 263, 74. (b) Kricheldrof, H. R.; Leppert, E. Synthesis
1971, 435. (c) Kricheldorf, H. R.; Leppert, E. Makromol. Chem. 1972,
158, 223. (d) Kato, S.; Akada, W.; Mizuta, M.; Ishii, Y. Bull. Chem. Soc.
Jpn. 1973, 46, 244. (e) Kricheldorf, H. R.; Leppert, E. Makromol. Chem.
1973, 167, 47. (f) Ishii, A.; Nakayama, J. In Comprehensive Organic
Functional Group Transformations II; Katritzky, A. R., Taylor, R. J. K.,
Eds.; Elsevier: Amsterdam, 2005; Vol. 5, pp 459ꢀ491. (g) Kato, S.;
Niyomura, O. Top. Curr. Chem. 2005, 251, 13. (h) Wojnowski, W.;
Wojnowska, M.; Grubba, R.; Konitz, A.; Pikies, J. Z. Anorg. Allg. Chem.
2008, 634, 730.
(10) Crich, D.; Sana, K.; Guo, S. Org. Lett. 2007, 9, 4423.
(11) Chen, S.; Xu, J. Tetrahedron Lett. 1992, 33, 647.
(12) In the search for effective new peptide ligations, thiol acids and
their derivatives have attracted much interest and recently resulted in
impressive synthetic advances, most notably from the following labora-
tories: Crich: (a) Sasaki, K.; Crich, D. Org. Lett. 2010, 12, 3254. (b)
Crich, D.; Sharma, I. Angew. Chem., Int. Ed. 2009, 48, 2355. (c) Crich, D.;
Sasaki, K. Org. Lett. 2009, 11, 3514. (d) Reference 10. Danishefsky:(e)
Wu, X.; Stockdill, J. L.; Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc.
2010, 132, 4098. (f) Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010,
132, 17045. (g) Rao, Y.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2009,
131, 12924. Williams:(h) Kolakowski, R. V.; Shangguan, N.; Sauers,
R. R.; Williams, L. J. J. Am. Chem. Soc. 2006, 128, 5695. (i) Barlett, K. N.;
Kolakowski, R. V.; Katukojvala, S.; Williams, L. J. Org. Lett. 2006, 8, 823.
(j) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. J. Am.
Chem. Soc. 2003, 125, 7754. Others:(k) Pan, J.; Devarie-Baez, N. O.;
Xian, M. Org. Lett. 2011, 13, 1092. (l) Zhang, X.; Li, F.; Lu, X.-W.; Liu,
C.-F. Bioconjugate Chem. 2009, 20, 197. (m) Hackenberger, C. P. R.;
Schwarzer, D. Angew. Chem., Int. Ed. 2008, 47, 10030.
(4) As a control reaction to assess the mechanism of the reaction of thiol
acids with azides to generate amides, Williams and co-workers investigated
the reaction of O-trimethylsilylthionobenzoate with benzyl azide, which
generated only trace amounts of corresponding amide (see ref 12h). In
14259
dx.doi.org/10.1021/ja2065158 |J. Am. Chem. Soc. 2011, 133, 14256–14259