Full Paper
1
[27] J.-N. Desrosiers, A. B. Charette, Angew. Chem. Int. Ed. 2007, 46, 5955–
5957; Angew. Chem. 2007, 119, 6059–6062.
[28] P. Mauleon, J. C. Carretero, Chem. Commun. 2005, 4961–4963.
[29] P. H. Bos, A. J. Minnaard, B. L. Feringa, Org. Lett. 2008, 10, 4219–4222.
[30] T. Nishimura, Y. Takiguchi, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 9086–
9089.
[31] J. Lu, J. Ye, W.-L. Duan, Org. Lett. 2013, 15, 5016–5019.
[32] Q. Zang, S. Javed, P. Porubsky, F. Ullah, B. Neuenswander, G. H. Lushing-
ton, F. Z. Basha, M. G. Organ, P. R. Hanson, ACS Comb. Sci. 2012, 14, 211–
217.
[33] J. J. Eisch, J. E. Galle, J. Org. Chem. 1979, 44, 3279–3280.
[34] L. R. Roberts, P. V. Fish, R. I. Storer, G. A. Whitlock, Bioorg. Med. Chem.
Lett. 2009, 19, 3113–3117.
[35] M. Asada, T. Obitsu, A. Kinoshita, Y. Nakai, T. Nagase, I. Sugimoto, M.
Tanaka, H. Takizawa, K. Yoshikawa, K. Sato, M. Narita, S. Ohuchida, H.
Nakai, M. Toda, Bioorg. Med. Chem. Lett. 2010, 20, 2639–2643.
[36] B. Venugopala Rao, V. S. H. Krishnana, K. Venkateswara Rao, V. S. Sankar,
P. K. Dubey, Der Pharma Chemica 2011, 3, 167–171.
[37] A. P. Chandrasekharappa, S. E. Badiger, P. K. Dubey, S. K. Panigrahi,
S. R. V. V. V. Manukonda, Bioorg. Med. Chem. Lett. 2013, 23, 2579–2584.
[38] M. J. Brienne, D. Varech, M. Leclercq, J. Jacques, N. Radembino, C. Dessa-
lles, G. Mahuzier, C. Gueyouche, C. Bories, J. Med. Chem. 1987, 30, 2232–
2239.
solid, m.p. 68–70 °C. H NMR (300 MHz, CDCl3): δ = 8.29 (s, 1 H, 1-
H), 7.48 (s, 1 H, 4-H), 7.41–7.32 (m, 6 H, Ph, 7-H), 7.22 (t, J = 2.7 Hz,
1 H, 2-H), 7.04 (dd, J = 8.3, 1.4 Hz, 1 H, 6-H), 6.52 (br. s, 1 H, 3-H),
4.35 (s, 2 H, -CH2Ph), 3.36–3.20 (m, 4 H, -CH2CH2-), 2.79 (s, 3 H, NCH3)
ppm. 13C NMR (75 MHz, CDCl3): δ = 136.0 (ipso-C, Ph), 135.0 (C-1a),
129.4, 128.8, 128.4 (o-C, Ph), 128.4, 128.1, 125.1, 122.6 (C-6), 120.2
(C-4), 111.6 (C-7), 102.4 (C-3), 54.0 (CH2Ph), 52.8 (SO2CH2-), 34.4
(NCH3), 29.8 (SO2CH2CH2) ppm. IR (ATR): ν = 3396 (bm), 1456 (m)
˜
1318 (s), 1148 (s), 725 (s) cm–1. HRMS (EI): calcd. for C18H20N2O2S
[M]+ 328.1245; found 328.1254.
Acknowledgments
The authors thank Evonik Oxeno for generous donations of sol-
vents, and Umicore (Hanau, Germany) for generous donations
of catalysts.
Keywords: Homogeneous catalysis · Cross-coupling ·
Palladium · Sulfonamides · Alkenes · Drug design
[39] P. Evans, M. Leffray, Tetrahedron 2003, 59, 7973–7981.
[40] N. P. McLaughlin, P. Evans, J. Org. Chem. 2010, 75, 518–521.
[41] V. Padmavathi, M. Swapna, S. N. Reddy, A. Padmaja, Chem. Heterocycl.
Compd. 2013, 48, 1641–1645.
[42] M. Nielsen, C. B. Jacobsen, N. Holub, M. W. Paixão, K. A. Jørgensen,
Angew. Chem. Int. Ed. 2010, 49, 2668–2679; Angew. Chem. 2010, 122,
2726–2738.
[43] J. C. Carretero, M. Demillequand, L. Ghosez, Tetrahedron 1987, 43, 5125–
5134.
[44] D. C. Reuter, J. E. McIntosh, A. C. Guinn, A. M. Madera, Synthesis 2003,
2321–2324.
[45] K. Ando, T. Wada, M. Okumura, H. Sumida, Org. Lett. 2015, 17, 6026–
6029.
[46] M. Jegelka, B. Plietker, ChemCatChem 2012, 4, 329–332.
[47] Q.-L. Xu, L.-X. Dai, S.-L. You, Org. Lett. 2010, 12, 800–803.
[48] S. Cacchi, G. Fabrizi, A. Goggiamani, L. M. Parisi, R. Bernini, J. Org. Chem.
2004, 69, 5608–5614.
[49] R. Guo, Q. Gui, D. Wang, Z. Tan, Catal. Lett. 2014, 144, 1377–1383.
[50] S. Dey, D. Datta, T. Pathak, Synlett 2011, 2521–2524.
[51] A. Aramini, M. C. Cesta, S. Coniglio, C. Bijani, S. Colagioia, V. D′Eli, M.
Allegretti, J. Org. Chem. 2003, 68, 7911–7914.
[52] Z.-H. Guan, W. Zuo, L.-B. Zhao, Z.-H. Ren, Y.-M. Liang, Synthesis 2007,
1465–1470.
[1] P. M. Wright, I. B. Seiple, A. G. Myers, Angew. Chem. Int. Ed. 2014, 53,
8840–8869; Angew. Chem. 2014, 126, 8984–9014.
[2] C. W. Thornber, Chem. Soc. Rev. 1979, 8, 563–580.
[3] L. M. Lima, E. J. Barreiro, Curr. Med. Chem. 2005, 12, 23–49.
[4] A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceutical substances,
5th ed., Thieme, Stuttgart, Germany, New York, 2009.
[5] W. Neidhart, V. Breu, K. Burri, M. Clozel, G. Hirth, U. Klinkhammer, T. Giller,
H. Ramuz, Bioorg. Med. Chem. Lett. 1997, 7, 2223–2228.
[6] H. Harada, J.-i. Kazami, S. Watanuki, R. Tsuzuki, K. Sudoh, A. Fujimori, A.
Tanaka, S.-i. Tsukamoto, I. Yanagisawa, Chem. Pharm. Bull. 2001, 49, 606–
612.
[7] Y.-Z. Lee, C.-W. Yang, I.-J. Kang, S.-H. Wu, Y.-S. Chao, J.-H. Chern, S.-J. Lee,
Bioorg. Med. Chem. Lett. 2008, 18, 5676–5679.
[8] C. Chazalette, M. Rivière-Baudet, C. T. Supuran, A. Scozzafava, J. Enzyme
Inhib. 2001, 16, 475–489.
[9] T. J. Blacklock, P. Sohar, J. W. Butcher, T. Lamanec, E. J. J. Grabowski, J.
Org. Chem. 1993, 58, 1672–1679.
[10] A. Casini, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, Curr. Cancer
Drug Targets 2002, 2, 55–75.
[11] S. Y. Woo, J. H. Kim, M. K. Moon, S.-H. Han, S. K. Yeon, J. W. Choi, B. K.
Jang, H. J. Song, Y. G. Kang, J. W. Kim, J. Lee, D. J. Kim, O. Hwang, K. D.
Park, J. Med. Chem. 2014, 57, 1473–1487.
[12] D. C. Meadows, J. Gervay-Hague, Med. Res. Rev. 2006, 26, 793–814.
[13] S. Liu, R. P. Hanzlik, J. Med. Chem. 1992, 35, 1067–1075.
[14] J. T. Palmer, D. Rasnick, J. L. Klaus, D. Bromme, J. Med. Chem. 1995, 38,
3193–3196.
[53] P. Katrun, S. Chiampanichayakul, K. Korworapan, M. Pohmakotr, V. Reutra-
kul, T. Jaipetch, C. Kuhakarn, Eur. J. Org. Chem. 2010, 5633–5641.
[54] W. Fan, J. Su, D. Shi, B. Feng, Tetrahedron 2015, 71, 6740–6743.
[55] D.-H. Duan, X. Huang, Synlett 1999, 317–318.
[56] S. Hirooka, Y. Tanbo, K. Takemura, H. Nakahashi, T. Matsuoka, S. Kuroda,
Bull. Chem. Soc. Jpn. 1991, 64, 1431–1433.
[57] H. Harada, J.-i. Kazami, S. Watanuki, R. Tsuzuki, K. Sudoh, A. Fujimori, T.
Tokunaga, A. Tanaka, S.-i. Tsukamoto, I. Yanagisawa, Chem. Pharm. Bull.
2001, 49, 1593–1603.
[15] H.-H. Otto, T. Schirmeister, Chem. Rev. 1997, 97, 133–172.
[16] W. R. Roush, S. L. Gwaltney, J. Cheng, K. A. Scheidt, J. H. McKerrow, E.
Hansell, J. Am. Chem. Soc. 1998, 120, 10994–10995.
[17] B. D. Jones, A. Tochowicz, Y. Tang, M. D. Cameron, L.-I. McCall, K. Hirata,
J. L. Siqueira-Neto, S. L. Reed, J. H. McKerrow, W. R. Roush, ACS Med.
Chem. Lett. 2016, 7, 77–82.
[58] B.-b. Zeng, S. B. King, Synthesis 2002, 2335–2337.
[59] G. W. Kabalka, S. K. Guchhait, Tetrahedron Lett. 2004, 45, 4021–4022.
[60] V. Nardello, J.-M. Aubry, P. Johnston, I. Bulduk, A. H. M. de Vries, P. L.
Alsters, Synlett 2005, 2667–2669.
[18] E. R. Kiemele, M. Wathier, P. Bichler, J. A. Love, Org. Lett. 2016, 18, 492–
495.
[19] D. I. B. Kerr, J. Ong, G. A. R. Johnston, J. Abbenante, R. H. Prager, Neurosci.
Lett. 1989, 107, 239–244.
[61] A. Battace, T. Zair, H. Doucet, M. Santelli, Synthesis 2006, 3495–3505.
[62] V. Chudasama, J. D. Wilden, Chem. Commun. 2008, 3768–3770.
[63] H. Ali, N. Cauchon, J. E. van Lier, Photochem. Photobiol. Sci. 2009, 8, 868–
874.
[64] G. K. S. Prakash, P. V. Jog, H. S. Krishnan, G. A. Olah, J. Am. Chem. Soc.
2011, 133, 2140–2143.
[65] F. Ullah, Q. Zang, S. Javed, P. Porubsky, B. Neuenswander, G. H. Lushing-
ton, P. R. Hanson, M. G. Organ, Synthesis 2012, 44, 2547–2554.
[66] B. Schmidt, Chem. Commun. 2003, 1656–1657.
[67] B. Schmidt, F. Hölter, R. Berger, S. Jessel, Adv. Synth. Catal. 2010, 352,
2463–2473.
[20] C. Bon, M. Galvan, Br. J. Pharmacol. 1996, 118, 961–967.
[21] G. Yu, H. Chen, X. Wu, S. G. Matta, B. M. Sharp, J. Neurochem. 2010, 113,
919–929.
[22] R. Jin, H. Liu, W.-Z. Jin, J.-D. Shi, Q.-H. Jin, C.-P. Chu, D.-L. Qiu, Eur. J.
Pharmacol. 2015, 764, 87–93.
[23] C.-S. Li, W. Howson, R. E. Dolle, Synthesis 1991, 244–244.
[24] Y. Nai, J. Xu, Helv. Chim. Acta 2013, 96, 1355–1365.
[25] É. S. Lipina, R. I. Bodina, T. P. Efimova, T. A. Novikova, V. V. Perekalin,
Pharm. Chem. J. 1999, 33, 598–600.
[26] T. Llamas, R. G. Arrayás, J. C. Carretero, Angew. Chem. Int. Ed. 2007, 46,
3329–3332; Angew. Chem. 2007, 119, 3393–3396.
Eur. J. Org. Chem. 2016, 2972–2982
2981
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim