Scheme 1. Proposed General Mechanism for the Stetter Reac-
tion
Figure 1. Catalysts used in the Stetter reaction.
asymmetric intermolecular reactions.8,9 Nevertheless, lim-
itations remain.
Mechanistic insight into organocatalytic reactions is
important for the development of general transforma-
tions.10 To the best of our knowledge a detailed study
probing the mechanism of the Stetter reaction has not been
reported. In the absence of such a study the working model
of the Stetter reaction is based on the Breslow mechanism
for the thiamin-catalyzed benzoin reaction.11,12 The
mechanism is closely related to Lapworth’s mechanism for
cyanide anion catalyzed benzoin reaction.13 As with the
cyanide-catalyzed benzoin reaction, the thiazolinylidene-
catalyzed reaction is reversible.14
The proposed catalytic cycle is as follows: the carbene I
(Scheme 1), formed in situ by base deprotonation of the
corresponding azolium salt, adds to the aldehyde to form
II. A proton transfer event generates acyl anion equivalent
III, termed the nucleophilic alkene or Breslow intermedi-
ate. Subsequent addition intothe Michael acceptorforms a
new carbon-carbon bond togenerateIV. A secondproton
transfer event then provides V. Finally, collapse of this
tetrahedral intermediate V to form a Stetter product is
accompanied by liberation of the active catalyst. As we
strive to understand differences in catalysts and continue
to work toward the development of the enantioselective
intermolecular reactions, we believe that the results from a
detailed mechanistic study may provide insight toward the
rational attainmentof these goals. Hereinwereportaseries
of mechanistic experiments that shed light on the nuances
that govern reactivity in the intramolecular Stetter
reaction.
(8) (a) Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130,
14066. (b) Liu, Q.; Rovis, T. Org. Lett. 2009, 11, 2856. (c) DiRocco,
D. A.; Dalton, D. M.; Oberg, K. M.; Rovis, T. J. Am. Chem. Soc. 2009,
131, 10872.
(9) Contributions from others: (a) Enders, D.; Han, J.; Henseler, A.
Chem. Commun. 2008, 3989. (b) Enders, D.; Han, J. Synthesis 2008,
3864. (c) Jousseaume, T.; Wurz, N. E.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1410. (d) For an enzyme-catalyzed asymmetric Stetter, see:
€
€
Dresen, C.; Richter, M.; Pohl, M.; Ludeke, S.; Muller, M. Angew.
Chem., Int. Ed. 2010, 49, 6600.
(10) (a) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
ꢀ
127, 3240. (b) Franzen, J.; Marigo, M.; Fielenback, D.; Wabnitz, T. C.;
Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296. (c)
Halland, N.; Lie, M. A.; Kjærsgaard, A.; Marigo, M.; Schiøtt, B.;
Jørgensen, K. A. Chem.;Eur. J. 2005, 11, 7083. (d) Grossman, R. B.;
Comesse, S.; Rasne, R. M.; Hattori, K.; Delong, M. N. J. Org. Chem.
2003, 68, 871. (e) Lemay, M.; Ogilvie, W. W. Org. Lett. 2005, 7, 4141. (f)
Armstrong, A. Angew. Chem., Int. Ed. 2004, 43, 1460. (g) Bulman Page,
P. C.; Barros, D.; Buckley, B. R.; Marples, B. A. Tetrahedron: Asym-
metry 2005, 16, 3488.
(11) (a) Breslow, R. J. J. Am. Chem. Soc. 1958, 80, 3719. (b) Knight,
R. L.; Leeper, F. J. Tetrahedron Lett. 1997, 38, 3611. (c) Knight, R. L.;
Leeper, F. J. J. Chem. Soc., Perkin Trans. 1 1998, 1891. (d) Dudding, T;
Houk, K. N. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5770. (d) Sheehan,
J. C.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666. (e) White,
M. J.; Leeper, F. J. J. Org. Chem. 2001, 66, 5124. (f) Mahathananchai, J.;
Zheng, P.; Bode, J. W. Angew. Chem., Int. Ed. 2011, 50, 1673.
(12) Lopez-Calahorra and co-workers proposed an alternative me-
chanism involving thiazolium dimer VI with the reaction occurring
through nucleophilic attack of this species on benzaldehyde to yield
VII, followed by formation of intermediate type VIII, lacking stabiliza-
tion of the carbanion. See, for example: Lopez-Calahorra, F.; Rubires,
R. Tetrahedron 1995, 51, 9713. For a counterpoint, see: Breslow, R.;
Schmuck, C. Tetrahedron Lett. 1996, 37, 8241.
As salicylaldehyde derived aldehyde 4 is used as a bench-
mark to measure the efficiency and selectivity of newly
developed catalysts for the Stetter reaction, it was chosen
as the substrate for this study, eq 1. Under standard
reaction conditions, aldehyde 4 is subjected to 20 mol %
2aand 20mol % KHMDS in toluene (0.025M) at0 °C; the
observed rate of the reaction is 2.65 ꢀ 10-3 M-1 s-1. Gas
chromatography was utilized for the analysis of cyclized
product 5 by using 4,40-di-tert-butyl biphenyl (DBB) as an
internal standard (tR 4.8 min) and monitoring the disap-
pearance of aldehyde 4 (tR 2.0 min) and concurrent
(13) Lapworth, A. J. Chem. Soc. 1903, 83, 995.
(14) Buck, J. S.; Ide, W. S. J. Am. Chem. Soc. 1931, 53, 2350.
Org. Lett., Vol. 13, No. 7, 2011
1743