chosen for all simulation and energy calculation.
[16] K. Pagel; D. J. Harvey. Ion mobility–mass spectrometry of complex
carbohydrates: collision cross sections of sodiated N-linked glycans. Anal.
Chem. 2013, 85, 5138–5145.
[17] M. Kliman; J. C. May; J. A. McLean. Lipid analysis and lipidomics by
structurally selective ion mobility-mass spectrometry. BBA Mol. Cell Biol. L.
2011, 1811, 935–945.
[18] Zhuang, X.; Zhao, B.; Liu, S.; Song, F.; Cui, F.; Liu, Z.; Li, Y. oncovalent
Interactions between Superoxide Dismutase and Flavonoids Studied by
Native Mass Spectrometry Combined with Molecular Simulations. Anal.
Chem. 2016, 88(23), 11720-11726.
spectrometry measures the conformational landscape of p27 and its
domains and how this is modulated upon interaction with Cdk2/cyclin A.
Angew. Chem. 2018, Doi:10.1002/ange.201812697.
Reasonable simulation results were then chosen to calculate
theoretical CCS by Collidoscope, an open source program
developed by Prell et al.[34] This program uses trajectory method
to calculate CCS. For all CCS computation, the net charge was set
to 0 and spherical nitrogen model was chosen as simulation gas
phase.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
[20] Mason E. A.; Schamp H. W. Ann. Phys. 1958, 4, 233-270.
[21] Christopher, D. Chouinard; Vinícius, Wilian, D. Cruzeiro; Christopher, R.
Beekman; Adrian, E. Roitberg; Richard A. Yost. Investigating Differences in
Gas-Phase Conformations of 25-Hydroxyvitamin D3 Sodiated Epimers
using Ion Mobility-Mass Spectrometry and Theoretical Modeling. J. Am.
Soc. Mass Spectrom. 2017, 28, 1497-1505.
[22] Anna Trod; Magdalena Zimnicka; Witold Danikiewicz. Separation of
catechin epimers by complexation using ion mobility mass spectrometry. J.
Mass Spectrom. 2015, 50, 542–548.
This work was funded by the National Natural Science
Foundation of China (No.21673219 and 81873193)
References
[1] Yanagida, A.; Shoji, A.; Shibhbusawa, Y.; Shindo, H,; Tagashira, M.; Ikeda,
M.; Ito, Y. Analytical separation of tea catechins and food-related
polypeenols by high-speed counter-current chromatography. J.
Chromatogr. A. 2006, 1112, 195-201.
[2] Kwik-Uribe, C.; Bektash, RM. Cocoa flavanols-measurement,
bioavailability and bioactivity. Asia Pac. J. Clin. Nutr. 2008, 17, 280–3.
[3] Cheng Guiwen, W.; Crisosto, Carlos, H. Browning Potential, Phenolic
Composition, and Polyphenoloxidase Activity of Buffer Extracts of Peach
and Nectarine Skin Tissue. J. Amer. Soc. Hort. Sci. 1995, 120, 835–838.
[4] P.M. Aron; J.A. Kennedy. Flavan-3-ols: nature, occurrence and biological
activity. Mol. Nutr. Food Res. 2008, 52, 79-104.
[5] Katiyar, S.; Elmets, C. A.; Katiyar, S. K. Green tea and skin cancer:
Photoimmunology, angiogenesis and DNA repair. J. Nutr. Biochem. 2007,
18, 287.
[23] József Szejtli. Introduction and General Overview of Cyclodextrin
Chemistry. Chem. Rev. 1998, 98 (5), 1743–1754.
[24] P. Dwivedi; C. Wu; L. M. Matz; B. H. Clowers; W. F. Siems; H. H. Hill.
Gasphase chiral separations by ion mobility spectrometry. Anal. Chem.
2006, 78, 8200–8206.
analysis of theanine and catechin in characterization of green tea by
cyclodextrin-modified micellar electrokinetic chromatography and high
performance liquid chromatography. J. Chromatogr. A. 2018, 1562,
115-122.
[6] Yanez J. A.; Remsberg C. M.; Miranda N. D.; Andrews P. K.; Vega-Villa K. R.;
Davies N. M. Pharmacokinetics of selected chiral flavonoids: hesperetin,
naringenin and eriodictyol in rats and their content in fruit juices.
Biopharm. Drug Dispos. 2008, 29, 63–82.
antiallergic catechin derivatives isolated from oolong tea. J. Agric. Food
Chem. 1999, 47, 1906-10.
[8] S. Baba, N.; Osakabe, M. Natsume, Y. Muto. In vivo comparison of the
bioavailability of (+)-catechin, (−)-epicatechin and their mixture in orally
administered rats. The Journal of Nutrition. 2001, 131, 2885–2891.
on the Oxidative Coloration of Phenolic Compounds in a Model White
Wine:ꢀ Comparison of (+)-Catechin and (−)-Epicatechin. J. Agric. Food
Chem. 2005, 53, 9993–9998.
[10] H. M. Merken; G. R. Beecher. Measurement of food flavonoids by
highperformance liquid chromatography: a review. J. Agric. Food Chem.
2000, 48, 577–599.
[11] D. Tsimogiannis; M. Samiotaki; G. Panayotou; V. Oreopoulou.
Characterization of flavonoid subgroups and hydroxy substitution by
HPLC-MS/MS. Molecules. 2007, 12, 593–606.
[12] Kunbo, W.; Zhonghua, L.; Jian-an, H.; Donghe, F.; Fang, L.; Yushun, G.;
Xiaosong, W. TLC separation of catechins and theaflavins on polyamide
plates. Journal of Planar Chromatography. 2009, 22(2), 97-100.
[13] EG, Yanes; SR, Gratz; AM, Stalcup. Tetraethylammonium
tetrafluoroborate: a novel electrolyte with a unique role in the capillary
electrophoretic separation of polyphenols found in grape seed extracts.
Analyst. 2000, 125(11), 1919-1923.
[26] Khedkar, J. K.; Gobre, V. V.; Pinjari, R. V.; Gejji, S. P. Electronic Structure
and Normal Vibrations in (+)-Catechin and (-)-Epicatechin encapsulated
β-cyclodextrin. J. Phys. Chem. A. 2010, 114, 7725.
[27] Dupuya, N.; Barbryb, D.; Briac, M.; Marquisd, S.; Vrielyncka, L.; Kistera, J.
1H NMR study of inclusion compounds of phenylurea derivatives in
β-cyclodextrin. J. Spectrochimica Acta Part A. 2005, 61, 1051.
[28] Iain Campuzano; Matthew, F. Bush; Carol, V. Robinson; Claire Beaumont;
Keith Richardson; Hyungjun Kim; Hugh I. Kim. Structural Characterization
of Drug-like Compounds by Ion Mobility Mass Spectrometry: Comparison
of Theoretical and Experimentally Derived Nitrogen Collision Cross
Sections. Anal. Chem. 2011, 84, 1026-1033.
[29] Rui Wang; Wen Gao; Bin Li; Chang-Jiang-Sheng Lai; Shan Lin; Ping Li; Hua
Yang.
A strategy for absolute quantitation of isomers using high
performance liquid chromatography-ion mobility mass spectrometry and
material balance principle. J. Chromatogr. A. 2018, 1571, 140-146.
[30] Xueqin, P.; Chenxi, J.; Zhengwei, C.; Lingjun, L. Structural Characterization
of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using
T-Wave Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2016,
28(1), 110-118.
[32] G. M. Morris; R. Huey; W. Lindstrom; M. F. Sanner; R. K. Belew; D. S.
Goodsell; A. J. Olson. AutoDock4 and AutoDockTools4: Automated
docking with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16),
2785-91.
[33] A.P. Lyubartsev; A. Laaksonen. MDynaMix - A scalable portable parallel
MD simulation package for arbitrary molecular mixtures. Computer
Physics Communications. 2000, 128, 565-589.
[14] A. B. Kanu; P. Dwivedi; M. Tam; L. Matz; H. H. Hill. Ion mobility–mass
spectrometry. J. Mass Spectrom. 2008, 43, 1–22.
[15] D. Balbeur, J.; Widart, B.; Leyh, L.; Cravello, E.; De Pauw. Detection of
oligonucleotide gas-phase conformers: H/D exchange and ion mobility as
complementary techniques. J. Am. Soc. Mass Spectrom. 2008, 19,
938–946.
[34] Ewing, S.A., Donor, M.T., Wilson, J.W., Prell J.S. Collidoscope: An
Improved Tool for Computing Collisional Cross-Sections with the
Trajectory Method J. Am. Soc. Mass Spectrom. 2017, 28, 587-596.
This article is protected by copyright. All rights reserved.