PRACTICAL SYNTHETIC PROCEDURES
g-Selective Allylic Alkylation of Ketene Silyl Acetal
1307
1H NMR (300 MHz, CDCl3): d = 1.01–1.10 (m, 24 H), 1.24 (t, J =
7.2 Hz, 3 H), 2.18–2.34 (m, 4 H), 2.59–2.68 (m, 1 H), 3.67 (t, J =
6.9 Hz, 3 H), 4.12 (q, J = 7.2 Hz, 1 H), 5.37–5.52 (m, 2 H).
13C NMR (75.4 MHz, CDCl3): d = 11.85, 14.15, 17.89, 36.27,
41.81, 60.07, 63.37, 125.85, 136.11, 172.83.
tions, see: Muraoka, T.; Matsuda, I.; Itoh, K. Tetrahedron
Lett. 2000, 41, 8807.
(6) For Rh-catalyzed a-selective allylic alkylations of malonates
with secondary allylic substrates, see: (a) Evans, P. A.;
Nelson, J. D. Tetrahedron Lett. 1998, 39, 1725. (b) Evans,
P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
(c) Ashfeld, B. L.; Miller, K. A.; Martin, S. F. Org. Lett.
2004, 6, 1321.
Anal. Calcd for C19H38O3Si: C, 66.61; H, 11.18. Found: C, 66.31;
H, 11.19.
(7) For iridium-catalyzed a-selective allylic alkylations of
malonates with secondary allylic substrates, see:
(a) Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120,
8647. (b) Bartels, B.; Helmchen, G. Chem. Commun. 1999,
741.
(8) For iron-catalyzed a-selective allylic alkylations of soft
carbon nucleophiles with secondary allylic substrates, see:
(a) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Synlett
1991, 513. (b) Plietker, B. Angew. Chem. Int. Ed. 2006, 45,
1469. (c) Holzwarth, M.; Dieskau, A.; Tabassam, M.;
Plietker, B. Angew. Chem. Int. Ed. 2009, 48, 7251.
(9) For ruthenium-catalyzed a-selective allylic alkylations of
malonates with secondary allylic substrates, see: (a) Trost,
B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem. Int. Ed. 2002,
41, 1059. (b) Kawatsura, M.; Ata, F.; Hayase, S.; Itoh, T.
Chem. Commun. 2007, 4283.
Acknowledgment
This work was supported by Grants-in-Aid for Scientific Research
(B) and for Young Scientists (B), JSPS. We thank MEXT for finan-
cial support in the form of a Global COE grant (Project No. B01:
Catalysis as the Basis for Innovation in Materials Science).
References
(1) For reviews on transition-metal-catalyzed allylic
substitutions, see: (a) Tsuji, J. Acc. Chem. Res. 1969, 2, 144.
(b) Trost, B. M. Tetrahedron 1977, 33, 2615. (c) Trost, B.
M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(d) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921. (e) Lu, Z.; Ma, S. Angew. Chem. Int. Ed. 2008, 47,
258.
(10) Li, D.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2011,
133, 5672.
(2) For selected examples on transition-metal-catalyzed
enantioselective allylic alkylations with ketone enolates,
see: (a) Trost, B. M.; Shroeder, G. M. J. Am. Chem. Soc.
1999, 121, 6759. (b) Braun, M.; Laicher, F.; Meier, T.
Angew. Chem. Int. Ed. 2000, 39, 3494. (c) Burger, E. C.;
Tunge, J. A. Org. Lett. 2004, 6, 4113. (d) Behenna, D. C.;
Stoltz, B. M. J. Am. Chem. Soc. 2005, 126, 15044. (e) Yan,
X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-X.; Dai,
L.-X.; Hou, X.-L. Angew. Chem. Int. Ed. 2005, 44, 6544.
(f) Trost, B. M.; Xu, J. J. Am. Chem. Soc. 2005, 127, 17180.
(g) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L.
J. Am. Chem. Soc. 2007, 129, 7718. (h) Chen, J.-P.; Ding,
C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc.
2010, 132, 15493. (i) Braun, M.; Meier, T. Angew. Chem.
Int. Ed. 2006, 45, 6952; and references therein.
(j) Graening, T.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 127,
17192.
(3) The regioselectivity in palladium-catalyzed allylic
substitutions that involve a (p-allyl)palladium intermediates
is highly dependent on the substitution pattern of allylic
substrates. See refs 1 and 2a–i.
(4) For rhodium-catalyzed a-selective allylic alkylations of
copper enolates derived from aryl ketones with chiral
secondary allylic alcohol derivatives bearing a terminal
alkene moiety, see: (a) Evans, P. A.; Leahy, D. K. J. Am.
Chem. Soc. 2003, 125, 8974. (b) Evans, P. A.; Lawler, M. J.
J. Am. Chem. Soc. 2004, 126, 8642.
(5) Rhodium-catalyzed allylic substitution of allylic carbonates
having an allylic system in the internal position with
enoxysilanes occurred competitively at the a- and g-posi-
(11) For copper-catalyzed g-selective and stereospecific allyl–
alkyl and allyl–aryl couplings with organoboron
compounds, see: (a) Ohmiya, H.; Yokobori, U.; Makida, Y.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 2895.
(b) Ohmiya, H.; Yokokawa, N.; Sawamura, M. Org. Lett.
2010, 12, 2438. (c) Whittaker, A. M.; Rucker, R. P.; Lalic,
G. Org. Lett. 2010, 12, 3216. (d) Shintani, R.; Takatsu, K.;
Takeda, M.; Hayashi, T. Angew. Chem. Int. Ed. 2011, 50,
8656.
(12) For palladium-catalyzed g-selective and stereospecific allyl–
aryl coupling between allylic esters and arylboronic acids,
see: (a) Ohmiya, H.; Makida, Y.; Tanaka, T.; Sawamura, M.
J. Am. Chem. Soc. 2008, 130, 17276. (b) Ohmiya, H.;
Makida, Y.; Li, D.; Tanabe, M.; Sawamura, M. J. Am. Chem.
Soc. 2010, 132, 879. (c) Li, D.; Tanaka, T.; Ohmiya, H.;
Sawamura, M. Org. Lett. 2010, 12, 3344. (d) Makida, Y.;
Ohmiya, H.; Sawamura, M. Chem. Asian J. 2011, 6, 410.
(13) For reviews on the Claisen rearrangement, see: (a) Ziegler,
F. E. Chem. Rev. 1988, 88, 1423. (b) Castro, A. M. M.
Chem. Rev. 2004, 104, 2939.
(14) For the rhodium-catalyzed reductive Claisen rearrangement
and discussions on the functional group compatibility of the
Ireland–Claisen rearrangement, see: Miller, S. P.; Morken, J.
P. Org. Lett. 2002, 4, 2743.
(15) For discussions on the functional group compatibility of the
Johnson–Claisen rearrangement, see: (a) Cosgrove, K. L.;
McGeary, R. P. Synlett 2009, 1749. (b) Cosgrove, K. L.;
McGeary, R. P. Tetrahedron 2010, 66, 3050.
(16) See the Supporting Information of ref. 6 for procedures
(17) Menéndez Pérez, B.; Hartung, J. Tetrahedron Lett. 2009, 50,
960.
© Thieme Stuttgart · New York
Synthesis 2012, 44, 1304–1307