Precursors 3 were synthesized from three basic segments
5À7 (Scheme 2). A combination of the cross-coupling
reaction of 511 with vinylmetal reagents 6, and the allyla-
tion of the resulting coupling products with allylic metal
reagents 7 led to 3.12
Scheme 3. Synthetic Sequence to Substituted Carbazole 10
With the desired precursors in hand, we looked into the
synthesis of indoles 4 using Grubbs second-generation
catalyst13 8. Examples of the synthesis of indoles having
a benzyl group and a benzenesulfonyl group attached
to nitrogen are listed in entries 1À4 and entries 5À12 in
Table 1, respectively. The reaction of 3a that has a benzyl
group at the R1 position and a methyl ester group at the
R5 position proceeded, but the yield of desired indole 4a
was only 12% (entry 1). Because we suspected that a
vinyl group at the R3 position and a methyl ester group
at the R2 position of 3a or 4a inactivated the catalyst by
forming a HoveydaÀGrubbs-type complex,14 the reac-
tion of 3b, the structure of which is the same as that of 3a
except that an aryl group is found at the R3 position
instead of a vinyl group, was next examined. However,
the result was almost the same as that of 3a and product
4b was obtained in only 13% yield (entry 2). Then, the
reaction of 3c, which is analogous to 3a but has a methyl
ester group at a different position (R6), was performed.
Much improvement was noted in this case and indole 4c
was formed in 53% yield (entry 3). Removing the methyl
ester group from the R6 position of 3c further improved
the reactivity. The RCM of 3d proceeded even at
Scheme 4. Synthetic Sequence to 7-Hydroxyindole 12
(7) (a) Arisawa, M.; Nishida, A.; Nakagawa, M. J. Organomet.
Chem. 2006, 691, 5109–5121. (b) Donohoe, T. J.; Fishlock, L. P.;
Procopiou, P. A. Chem.;Eur. J. 2008, 14, 5716–5726.
(8) For recent examples, see: (a) Donohoe, T. J.; Bower, J. F.;
Basutto, J. A.; Fishlock, L. P.; Procopiou, P. A.; Callens, C. K. A.
Tetrahedron 2009, 65, 8969–8980. (b) Donohoe, T. J.; Bower, J. F. Proc.
Natl. Acad. Sci. U.S.A. 2010, 107, 3373–3376. (c) Ziffle, V. E.; Cheng, P.;
Clive, D. L. J. J. Org. Chem. 2010, 75, 8024–8038.
(9) For examples of the construction of benzene rings fused to
aromatic heterocycles, see: (a) Selvakumar, N.; Khera, M. K.; Reddy,
B. Y.; Srinivas, D.; Azhagan, A. M.; Iqbal, J. Tetrahedron Lett. 2003, 44,
7071–7074. (b) Bennasar, M. L.; Zulaica, E.; Tummers, S. Tetrahedron
Lett. 2004, 45, 6283–6285. (c) Pelly, S. C.; Parkinson, C. J.; Van Otterlo,
W. A. L.; De Koning, C. B. J. Org. Chem. 2005, 70, 10474–10481. (d)
Mamane, V.; Fort, Y. J. Org. Chem. 2005, 70, 8220–8223.
(10) (a) Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127,
10470–10471. (b) Yoshida, K.; Kawagoe, F.; Iwadate, N.; Takahashi,
H.; Imamoto, T. Chem. Asian J. 2006, 1, 611–613. (c) Yoshida, K.;
Horiuchi, S.; Iwadate, N.; Kawagoe, F.; Imamoto, T. Synlett 2007,
1561–1564. (d) Yoshida, K.; Toyoshima, T.; Imamoto, T. Chem. Com-
mun. 2007, 3774–3776. (e) Yoshida, K.; Takahashi, H.; Imamoto, T.
Chem.;Eur. J. 2008, 14, 8246–8261. (f) Yoshida, K.; Shishikura, Y.;
Takahashi, H.; Imamoto, T. Org. Lett. 2008, 10, 2777–2780. (g) Yoshida,
K.; Narui, R.; Imamoto, T. Chem.;Eur. J. 2008, 14, 9706–9713. (h)
Yoshida, K.; Toyoshima, T.; Imamoto, T. Bull. Chem. Soc. Jpn. 2008,
81, 1512–1517. (i) Yoshida, K.; Kawagoe, F.; Hayashi, K.; Horiuchi, S.
Imamoto, T.; Yanagisawa, A. Org. Lett. 2009, 11, 515–518. (j) Takahashi,
H.; Yoshida, K.; Yanagisawa, A. J. Org. Chem. 2009, 74, 3632–3640. (k)
Yoshida, K.; Shida, H.; Takahashi, H.; Yanagisawa, A. Chem.;Eur. J.
2011, 17, 344–349.
(11) (a) Fukuda, T.; Hayashida, Y.; Iwao, M. Heterocycles 2009, 77,
1105–1122. (b) Fukuda, T.; Ohta, T.; Sudo, E.-i.; Iwao, M. Org. Lett.
2010, 12, 2734–2737.
(12) See the Supporting Information for details of the synthesis of 3.
(13) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett.
1999, 1, 953–956. (b) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.;
Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs,
R. H. J. Am. Chem. Soc. 2003, 125, 2546–2558. (c) Vougioukalakis,
G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746–1787.
room temperature and 4d was obtained in good yield
(entry 4).
On the other hand, the reaction of simpler 3e that has a
benzenesulfonyl group at the R1 position gave desired
indole 4e quantitatively (entry 5). In the reactions of
substrates that have the basic structure of 3e, good yields
wereobserved(entries 6À10). The introduction ofa methyl
ester group at the R5 or R6 position was no longer a serious
problem and the reaction of 3f,g gave indoles 4f,g in good
yields (entries 6 and 7 vs 1À3). Substrates having substi-
tuents at the R4 or R7 position were also converted into
corresponding products 4hÀj in excellent yields without
any problems (entries 8À10).15 Although the reaction of
(14) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2000, 122, 8168–8179.
(15) The ThorpeÀIngold effect may be responsible for the high yield
of 4i. See: Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735–1766.
4764
Org. Lett., Vol. 13, No. 18, 2011