bioactivity.4 The asymmetric synthesis of this class of
compounds involves the stereocontrolled installation of a
spiro-quaternary chiral carbon center, which has been a
challenging goal for synthetic chemists. In 2009, Melchiorre
and co-workers reported the first example of a one-step
synthesis of multistereogenic spiro[cyclohexane-1,30-in-
doline]-20,4-diones via a tandem iminium and enamine
catalytic sequence (Figure 1).5 Shortly after, Gong’s group
disclosed a highly enantioselective synthesis via the reaction
between methyleneindolinones and Nazarov reagents cata-
lyzed by Brønsted acid-Lewis base bifunctional organocata-
lysts.6 Very recently, Wang et al. reported a highly enantio-
selective procedure to the similar types of spirocyclic
oxindoles by using a primary amine-catalyzed double
Michael reaction of 3-nonsubstituted oxindoles with die-
nones (Figure 1).7 However, to the best of our knowledge, so
far no results have been reported in the literature for the
enantioselective synthesis of spiro[cyclohexane-1,30-in-
doline]-20,3-diones (Figure 1). Herein, we disclosed that
optically pure spiro[cyclohexane-1,30-indoline]-20,3-diones
could be efficiently synthesized in high yields with excellent
diastereo- and enantioselectivities through the cascade
Michael additions of isatylidene malononitriles 18 with R,β-
unsaturated ketones 2via the catalysis of a cinchona alkaloid-
derived primary amine together with an acidic additive.
Figure 2. Screened catalysts.
achiral protic acid9 can act as powerful catalyst in asym-
metric enamine and iminium ion transformation,10 we
began the investigation by testing the model reaction
between 1a and 2a with 20 mol % quinidine-derived
primary amine I or its pseudoenantiomer II as the catalyst
and 40 mol % protic acids A1ꢀA6 (Figure 2) as the
additives. After an initial screening of additives for the
reactions performed at room temperature (Table S1, Sup-
porting Information), it was found that the combination of
amine catalyst I and BINOL-derived chiral phosphoric
acid11 A5 was optimal in terms of both diastereo- and
enantioselectivities, affording the corresponding spiro-
[cyclohexane-1,30-indoline]-20,3-dione 3ain90% yield with
excellent optical purity (98:2 dr, 98% ee). However, in this
case the reaction was found to be somewhat sluggish, which
took several days to completion. Therefore, the reaction
conditions were further optimized by examination of the
effects of temperature and solvent, as well as the potential
matched/mismatched combinations10 of catalysts I or II with
chiral A1ꢀA6, and the results were shown in Table 1.
Gratifyingly, the I/A5 catalyzed reaction in 1,2-dichlor-
oethane (DCE) proceeded much faster with the elevation
of temperature from rt to 80 °C, to furnish the product 3a in
nearly quantitative yields without sacrificing of either diaster-
eoselectivities or enantioselectivities (entries 1ꢀ8). Further
screening of the other catalyst/additive pairs reveals that I/A5
was the matched combination, affording the product in
Figure 1. Spiro[cyclohexanone-oxindole] backbones.
Inspiredbythe establishedfactthatthe combination ofa
cinchona alkaloid-derived primary amine with a chiral or
(3) For selected recent reviews, see: (a) Trost, B. M.; Jiang, C.
Synthesis 2006, 369. (b) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth.
Catal. 2010, 352, 1381. For selected publications, see:(c) Bui, T.; Syed, S;
Barbas, C. F., III J. Am. Chem. Soc. 2009, 131, 8758. (d) Chen, X.-H.;
Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131,
13819. (e) Galzerano, P.; Bencivenni, G.; Pesciaioli, F.; Mazzanti, A.;
Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P. Chem.;Eur. J.
2009, 15, 7846. (f) Jiang, K.; Jia, Z.-J.; Wu, L.; Chen, Y.-C. Org. Lett.
2010, 12, 2766. (g) Wang, L.-L.; Peng, L.; Bai, J.-F.; Huang, Q.-C.; Xu,
X.-Y.; Wang, L.-X. Chem. Commum. 2010, 46, 8064. (h) Tan, B.;
Candeias, N. R.; Barbas, C. F., III Nat. Chem. 2011, 3, 473.
(4) Liu, J.-J.; Zhang, Z. Hoffmann-LaRoche AG, PCT Int. Appl.
WO2008/055812, 2008.
(10) For limited reviews and publications on aminocatalysis, see: (a)
List, B. Acc. Chem. Res. 2004, 37, 548. (b) List, B. Chem. Commun. 2006,
819. (c) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed.
€
2007, 46, 1570. (d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.
Chem. Rev. 2007, 107, 5471. (e) Lelais, G.; MacMillan, D. W. C.
Aldrichim. Acta 2006, 39, 79. (f) Chen, Y.-C. Synlett 2008, 13, 1919.
(g) Lu, X.; Liu, Y.; Sun, B.; Cindric, B.; Deng, L. J. Am. Chem. Soc. 2008,
130, 8134. (h) Singh, R. P.; Bartelson, K.; Wang, Y.; Su, H.; Lu, X.;
Deng, L. J. Am. Chem. Soc. 2008, 130, 2422. (i) Xu, L.-W.; Luo, J.; Lu,
Y. Chem. Commum. 2010, 45, 1807.
(11) For examples of leading references, see: (a) Akiyama, T.; Itoh, J.;
Yokota, K.; Fuchibe, K. Angew. Chem., Int.Ed. 2004, 43, 1566. (b)
Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356. For
selected recentexamples, see: (c) Seayad, J.; Seayad, A. M.; List, B J. Am.
Chem. Soc. 2006, 128, 1086. (d) Kang, Q.; Zhao, Z.-A.; You, S.-L. J. Am.
Chem. Soc. 2007, 129, 1484. (e) Li, G. L.; Liang, Y. X.; Antilla, J. C.
J. Am. Chem. Soc. 2007, 129, 5830. (f) Rueping, M.; Antonchick, A. P.;
Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903. (g) Jia, Y.-X.;
Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew. Chem., Int. Ed.
2007, 46, 5565. (h) Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K.
Angew. Chem., Int. Ed. 2008, 47, 2840.
(5) Bencivenni, G.; Wu, L. Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli,
F.; Song, M. P.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48,
7200.
(6) Wei, Q.; Gong, L.-Z. Org. Lett. 2010, 12, 1008.
(7) Wang, L.-L.; Peng, L.; Bai, J.-F.; Jia, L.-N.; Luo, X.-Y.; Huang,
Q. C.; Wang, L.-X. Chem. Commum. 2011, 47, 5593.
(8) (a) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.; Cun, L.-F.; Zhang, X.-M.;
Yuan, W.-C. Org. Lett. 2010, 12, 3132. (b) Deng, H.-P.; Wei, Y.; Shi, M.
Org. Lett. 2011, 13, 3348.
(9) For selected asymmetric counteranion directed catalysis, see:
(a) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368. (b)
Lifchits, O.; Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2010, 132,
10227. (c) Bergonzini, G.; Vera, S.; Melchiorre, P. Angew. Chem., Int.
Ed. 2010, 49, 9685. (d) Liu, C.; Lu, Y. Org. Lett. 2010, 12, 2278.
Org. Lett., Vol. 13, No. 18, 2011
4867