P. Mosae Selvakumar et al. / Inorganica Chimica Acta 375 (2011) 106–113
[16] N. Yoshida, H. Oshio, T. Ito, J. Chem. Soc., Perkin Trans. 2 (1999) 975.
113
[17] B.J. McNelis, L.C. Nathan, C.J. Clark, J. Chem. Soc., Dalton Trans. (1999) 1831.
[18] Y. Song, I.A. Koval, P. Gamez, G.A. Van Albada, I. Mutikainen, U. Turpeinen, J.
Reedijk, Polyhedron 23 (2004) 1769.
[19] K.T. Potts, K.M. Kesharvarzz, F.K. Tham, H.D. Abruna, C. Arana, Inorg. Chem. 32
(1993) 4422.
[20] K.T. Potts, K.M. Kesharvarzz, F.K. Tham, H.D. Abruna, C. Arana, Inorg. Chem. 32
(1993) 4436.
[21] K.T. Potts, C.P. Horwitz, A. Fessak, K.M. Keshavarz, K.E. Nash, P.J. Toscano, J. Am.
Chem. Soc. 115 (1993) 10444.
[22] E.C. Constable, T. Kulke, M. Neuburger, M. Zehnder, Chem. Commun. (1997)
489.
[23] E.C. Constable, M.G.B. Drew, M.D. Ward, J. Chem. Soc., Chem. Commun. (1987)
1600.
[24] M. Barely, E.C. Constable, S.A. Corr, M.G.B. Drew, R.C.S. McQueen, J.C. Nutkins,
M.D. Ward, J. Chem. Soc., Dalton Trans. (1988) 2655.
[25] R. Kramer, J.-M. Lehn, A. Marquis-Rigault, Proc. Natl. Acad. Sci. USA 90 (1993)
5394.
[26] C.M.V. Smith, J.-M. Lehn, Chem. Commun. (1996) 2735.
[27] F.A. Luzzio, Tetrahedron 57 (2001) 915.
[28] G.M. Sheldrick, SAINT, 5.1 ed., Siemens Industrial Automation Inc., Madison,
WI, 1995.
[29] SADABS, Empirical absorption Correction Program, University of Göttingen,
Göttingen, Germany, 1997.
[30] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
[31] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[32] A.L. Spek, PLATON-97, University of Utrecht, Utrecht, The Netherlands, 1997.
[33] Mercury 1.3 Supplied with Cambridge Structural Database, CCDC, Cambridge,
UK, 2003–2004.
[34] S. Patra, P. Paul, Dalton Trans. (2009) 8683.
[35] H. Colchoubian, W.L. Waltz, J.W. Quail, Can. J. Chem. 77 (1999) 37.
[36] C. Fraser, B. Bosnich, Inorg. Chem. 33 (1994) 338.
[37] M. Vilas-Boas, C. Freire, B. Castro, P.A. Chistensen, A.R. Hillman, Inorg. Chem.
36 (1997) 4919.
[38] E.I. Solomon, M.J. Baldwin, M.D. Lowery, Chem. Rev. 92 (1992) 521.
[39] R.I. Harlow, W.J. Wells, S.H. Simonsons, Inorg. Chem. 14 (1975) 1768.
[40] M.M. Bhadbhade, D. Srinivas, Inorg. Chem. 32 (1993) 5458.
[41] E. Suresh, M.M. Bhadbhade, D. Srinivas, Polyhedron 15 (1996) 4133.
[42] C.O. Dietrich-Buchecker, J.F. Nierengarten, J.P. Sauvage, N. Armaroli, V. Balzani,
I. De Cola, J. Am. Chem. Soc. 115 (1993) 11237.
[43] W. Zarges, J. Hall, J.-M. Lehn, C. Bolm, Helv. Chim. Acta 74 (1991) 1843.
[44] C. Piguet, G. Hopfgartner, B. Bocquet, O. Schaad, A.F. Williams, J. Am. Chem.
Soc. 116 (1994) 9092.
[45] J. Xu, T.N. Parac, K.N. Raymond, Angew. Chem., Int. Ed. 38 (1999) 2878.
[46] M. Albrecht, Chem. Eur. J. 6 (2000) 3485.
Scheme 3. Proposed mechanism for nitroaldol reaction.
Henry reaction by complex 5 catalyzing the 4-nitrobenzaldehyde
to the corresponding nitroalcohol gave 85% yield at 70 °C and sug-
gested that these complexes can be used as catalyst for such nitro-
aldol reactions.
Acknowledgements
The authors P.S., P.M.S. and S.N. gratefully acknowledge the
financial support extended by DST (Project No. SR/S1/IC-19/2005)
and CSIR New Delhi (NWP 0010). Mr. Arun Kumar Das and Mr. Vi-
nod Agarwal are gratefully acknowledged for recording MS and IR
spectra, respectively.
[47] D. Sredojevic, G.A. Bogdanovic, Z.D. Tomic, S.D. Zaric, Cryst. Eng. Commun. 9
(2007) 793.
[48] B. Manimaran, L.-J. Lai, P. Thanasekaran, J.-Y. Wu, R.-T. Liao, J.-W. Tseng, Y.-H.
Liu, G.-H. Lee, S.-M. Peng, K.-L. Lu, Inorg. Chem. 45 (2006) 8070.
[49] P. Mosae Selvakumar, E. Suresh, P.S. Subramanian, Polyhedron 28 (2009) 245.
[50] U. Mukhopadhyay, D. Choquesillo-Lazarte, J. Niclos-Gutierrez, I. Bernal, Cryst.
Eng. Commun. 6 (2004) 627.
Appendix A. Supplementary material
[51] Z.D. Tomic, V.M. Leovac, Z.K. Jacimovic, G. Giester, S.D. Zaric, Inorg. Chem.
Commun. 9 (2006) 833.
[52] Z.D. Tomic, S.B. Novakovic, S.D. Zaric, Eur. J. Inorg. Chem. (2004) 2215.
[53] Z.D. Tomic, D. Sredojevic, S.D. Zaric, Cryst. Growth Des. 6 (2006) 290.
CCDC Nos. 773239 and 773240 for complexes 1 and 2 contains
the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
Supplementary data associated with this article can be found, in
[54] M. Nishio, M. Hirota, Y. Umezawa, The C–Hꢀ ꢀ ꢀ
p Interaction (Evidence, Nature
and Consequences), Wiley-VCH, New York, 1998.
[55] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and
Biology, Oxford University Press Inc., New York, 1999.
[56] G.R. Desiraju, Acc. Chem. Res. (2002) 565.
[57] M. Barcelo-Oliver, A. Terron, A. Garcia-Raso, N. Lah, I. Turel, Acta Crystallogr.,
Sect. C 66 (2010) o313.
References
[58] T.G. Fawcett, S.M. Rudich, B.H. Toby, R.A. Lalancette, J.A. Potenza, H.J. Schugar,
Inorg. Chem. 19 (1980) 940.
[59] M.N. Potenza, J.A. Potenza, H.J. Schugar, Acta Crystallogr., Sect. C 44 (1988)
1201.
[60] P.J. Burke, D.R. McMillin, W.R. Robinson, Inorg. Chem. 19 (1980) 1211.
[61] M. Konda, Y. Shibuya, K. Nabari, M. Miyazawa, S. Yasue, K. Maeda, F. Uchida,
Inorg. Chem. Commun. 10 (2007) 1311.
[1] K.W. Penfield, R.R. Gay, R.S. Himmelwright, N.C. Eickman, V.A. Norris, H.C.
Freeman, E.I. Solomon, J. Am. Chem. Soc. 103 (1981) 4382.
[2] E.I. Solomon, K.W. Penfield, D.E. Wilcox, Struct. Bonding 53 (1983) 1.
[3] B.J. Hathaway, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.),
Comprehensive Coordination Chemistry, vol. 5, Pergamon Press, Oxford,
1987, p. 558 (Chapter 53).
[62] B. Bleaney, K.D. Bowers, Proc. R. Soc. Lond. A 214 (1952) 451.
[63] H. Abe, J. Shimada, Phys. Rev. 90 (1953) 316.
[4] A. Messerschmidt, Adv. Inorg. Chem. 40 (1994) 121.
[5] A.G. Sykes, Adv. Inorg. Chem. 36 (1991) 377.
[64] A. Bertini, D. Gatteschi, EPR of Exchange Coupled Systems, Springer-Verlag,
Berlin, 1990 (Chapter 10).
[6] C.R. Jacob, S.P. Varkey, P. Ratnasamy, Microporous Mesoporous Mater. 22
(1998) 465.
[65] S. Chavan, D. Srinivas, P. Ratnasamy, J. Catal. 192 (2000) 286.
[66] J.R. Wasson, C.-I. Shyr, C. Trapp, Inorg. Chem. 7 (1968) 469.
[67] F.A. Luzzio, R.W. Fitch, Tetrahedron Lett. 35 (1994) 6013.
[68] D.A. Evans, D. Seidel, M. Rueping, H.W. Lam, J.T. Shaw, C.W. Downey, J. Am.
Chem. Soc. 125 (2003) 12692.
[7] C.R. Jacob, S.P. Varkey, P. Ratnasamy, Appl. Catal. A 168 (1998) 353.
[8] J.M. Lehn, Supramolecular Chemistry. Concepts and Perspectives, VCH,
Weinheim, 1995.
[9] C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 97 (1997) 2005.
[10] E.L. Eliel, S.H. Wilen, L.N. Mander, Stereochemistry of Organic Compounds,
Wiley, New York, 1994 (Chapter 4).
[69] K. Ma, J. You, Chem. Eur. J. 13 (2007) 1863.
[70] G. Zhang, E. Yashima, W.-D. Woggon, Adv. Synth. Catal. 351 (2009) 1255.
[71] B. Qin, X. Xiao, X. Liu, J. Huang, Y. Wen, X.J. Feng, Org. Chem. 72 (2007) 9323.
[72] C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. (2007) 2561.
[73] A. Noole, K. Lippur, A. Metsala, M. Lopp, T. Kanger, J. Org. Chem. 75 (2010)
1313.
[11] M. Albrecht, Chem. Rev. 101 (2001) 3457.
[12] M.J. Hannon, L.J. Childs, Supramol. Chem. 16 (2004) 7.
[13] H. Jiang, A. Hu, W. Lin, Chem. Commun. 961 (2003) 961.
[14] H.-L. Kwong, H.-L. Yeung, W.-S. Lee, W.-T. Wong, Chem. Commun. (2006)
4841.
[15] N. Yoshida, H. Oshio, T. Ito, Chem. Commun. (1998) 63.