ORGANIC
LETTERS
2011
Vol. 13, No. 19
4977–4979
Ruthenium-Catalyzed Para-Selective
Oxidative Cross-Coupling of Arenes and
Cycloalkanes‡
Xiangyu Guo and Chao-Jun Li*
Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
Received August 1, 2011
ABSTRACT
A novel, direct para-selective oxidative cross-coupling of benzene derivatives with cycloalkanes catalyzed by ruthenium was developed. A wide
range of arenes bearing electron-withdrawing substituents was functionalized directly with simple cycloalkanes with high para-selectivity; arenes
with electron-donating groups were mainly para-functionalized. Benzoic acid can be used directly.
Regiocontrolled functionalization of aromatic rings has
been an important subject throughout the history of organic
chemistry because of the vital role of aromatic compounds in
materials, fine chemicals, and biological compounds. The
FriedelꢀCrafts-type1 electrophilic substitution of arenes con-
stituted a key pillar of classical synthetic chemistry, leading to
o- andp-aryl CꢀC bonds with electron-donating substituents
and meta-functionalization with electron- withdrawing sub-
stituents. The ortho-lithiation2 and chelation-controlled tran-
sition-metal catalyzed cross-couplings are milestones of
modern achievements in creating alternatives,3 furnishing
ortho-functionalized products regioselectively. Recently, a
significant advance has been made by Gaunt4 and others5
in achieving meta-functionalization of substituted arenes
through transition-metal catalysis. However, the regioselec-
tive transition-metal-catalyzed functionalization of arenes at
the para-position remains virtually unexplored.6
On the other hand, the formation of a carbonꢀcarbon
(CꢀC) bond directly from carbonꢀhydrogen (CꢀH) bonds
via an oxidative cross-coupling has emerged as a powerful
synthetic methodology.7 Such a process will allow the use of
less functionalized starting materials and greatly reduce the
number of synthetic operations.7 For oxidative cross-cou-
pling involving arenes, Fujiwara8 pioneered a palladium-
catalyzed areneꢀalkene oxidative Heck-type coupling, which
has recently been achieved in water by Lipshutz.9 The use
of ruthenium catalyst for such a coupling was achieved
by Milstein.10 Recently, Fagnou11 and others12 reported a
direct areneꢀarene coupling reaction using simple benzene
as reagent. Very recently, the oxidative areneꢀalkyne
coupling13 was also achieved. For the more challenging
(7) (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford University Press: New York, 1998. (b) Lewis, J. C.;
Bergman, R. G.; Ellman, J. Acc. Chem. Res. 2008, 41, 1013. (c) Newhouse,
T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 2010.
(8) (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119. (b)
Fujiwara, Y.; Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am.
Chem. Soc. 1969, 91, 7166.
(9) Nishikata, T.; Lipshutz, B. H. Org. Lett. 2010, 12, 1972.
(10) Weissman, H.; Song, X.; Milstein, D. J. Am. Chem. Soc. 2001,
123, 337.
(11) (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (b) Stuart,
D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
(12) (a) Li, R.; Liang, L.; Lu, W. Organometallics 2006, 25, 5973. (b)
Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org.
Lett. 2007, 9, 3137. (c) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2007, 129, 11904. (d) Potavathri, S.; Pereira, K. C.; Gorelsky, S. I.; Pike,
A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676.
(13) (a) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212. (b)
Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
3478.
‡ Dedicated to Prof. Barry M. Trost on the occasion of his 70th birthday.
(1) Friedel, C.; Crafts, J. M. Compt. Rend. 1877, 84, 1392.
(2) (a) Kauch, M.; Hoppe, D. Synthesis 2006, 1575. (b) Nguyen, T.-
H.; Castanet, A.-S.; Mortier, J. Org. Lett. 2006, 8, 765. (c) Pena, M. A.;
Sestelo, J. P.; Sarandeses, L. A. J. Org. Chem. 2007, 72, 1271.
(3) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(4) (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (b) Duong,
H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2010, 50, 463.
(5) For examples on meta-selective CꢀH bond functionalization, see:
(a) Zhou, Y.; Zhao, J.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 7126. (b)
Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072. (c)
Wang, X.; Leow, D.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 13864–13867.
(6) Amboya, A.; Nguyen, T.; Huynh, H. T.; Brown, A.; Ratliff, G.;
Yonutas, H.; Cizmeciyan, D.; Natarajanb, A.; Garibay, M. A. G. Org.
Biomol. Chem. 2009, 7, 2322.
r
10.1021/ol202081c
2011 American Chemical Society
Published on Web 08/31/2011