Journal of the American Chemical Society
ARTICLE
provides either cyclopentenol or cyclopentenone products.
Intermolecular procedures provide monocyclic products,
whereas the corresponding intramolecular versions provide
bicyclic or tricyclic compounds. A mechanistic pathway involving
the formation of metallacyclic enolates followed by rapid pro-
tonation and carbonyl addition is most consistent with the results
obtained. In contrast to well-established cycloaddition proce-
dures for assembly of five-membered rings, the use of simple
π-components as starting reagents is made possible by the net
two-electron reduction that occurs during cyclizations. We
envision that many classes of odd-numbered ring cycloadditions
may become possible by strategies of this type.
(7) (a) For a review of phosphine-based organocatalytic [3 + 2]
cycloadditions, see: Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004,
346, 1035–1050. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem.
Soc. 2004, 126, 14370–14371. (c) Zhang, C.; Lu, X. J. Org. Chem. 1995,
60, 2906–2908. (d) Wang, J.-C.; Ng, S.-S.; Krische, M. J. J. Am. Chem.
Soc. 2003, 125, 3682–3683.
(8) A portion of this work has previously been described: Herath, A.;
Montgomery, J. J. Am. Chem. Soc. 2006, 128, 14030–14031.
(9) Chang, H. T.; Jayanth, T. T.; Cheng, C. H. J. Am. Chem. Soc. 2007,
129, 4166–4167.
(10) (a) Suzuki, K.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 1996,
118, 8729–8730. (b) Urabe, H.;Suzuki, K.; Sato, F. J. Am. Chem.Soc.1997,
119, 10014–10027.
(11) Williams, V. M.; Kong, J. R.; Ko, B. J.; Mantri, Y.; Brodbelt, J. S.;
Baik, M.-H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 16054–16062.
(12) (a) Schomaker, J. M.; Toste, F. D.; Bergman, R. G. Org. Lett. 2009,
11, 3698–3700. (b) Molander, G. A.; Shubert, D. C. J. Am. Chem. Soc. 1986,
108,4683–4685. (c) Nakamura, H.; Aoyagi, K.; Singaram, B.; Cai, J.; Nemoto,
H.; Yamamoto, Y. Angew. Chem., Int. Ed. 1997, 36, 367–369.
(13) We use the term reductive cycloaddition to refer to a process
that involves ring formation via cycloaddition of two reagents with a net
two-electron reduction. For examples of reductive cycloadditions:
(a) Enholm, E. J.; Kinter, K. S. J. Am. Chem. Soc. 1991, 113, 7784–
7785. (b) Hays, D. S.; Fu, G. C. J. Org. Chem. 1996, 61, 4–5.
(c) Savchenko, A. V.; Montgomery, J. J. Org. Chem. 1996, 61, 1562–
1563. (d) Kulinkovich, O. G. Chem. Rev. 2003, 103, 2597–2632. (e) Lee,
J.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 1996, 118, 4198–4199. (f) For
examples of oxidative cycloadditions: Snider, B. B.; Han, L.; Xie, C.
J. Org. Chem. 1997, 62, 6978–6984.
(14) (a) Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.;
Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6775–6776. (b) Amarasinghe,
K. K. D.; Chowdhury, S. K.; Heeg, M. J.; Montgomery, J. Organometallics
2001, 20, 370–372. (c) Mahandru, G. M.; Skauge, A. R. L.; Chowdhury,
S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. J. Am. Chem. Soc.
2003, 125, 13481–13485.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
dures, characterization data, and copies of NMR spectra. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the
manuscript.
’ ACKNOWLEDGMENT
The U.S. National Science Foundation is acknowledged for
support of this work (grant CHE-1012270).
(15) (a) Kimura, M.; Ezoe, A.; Tanaka, S.; Tamaru, Y. Angew. Chem.,
Int. Ed. 2001, 40, 3600–3602. (b) Patel, S. J.; Jamison, T. F. Angew.
Chem., Int. Ed. 2003, 42, 1364–1367.
(16) (a) Li, W.; Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2009,
131, 17024–17029. (b) Herath, A.; Thompson, B. B.; Montgomery, J.
J. Am. Chem. Soc. 2007, 129, 8712–8713. For earlier studies, see:
(c) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890–3908.
(17) (a) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. J. Am. Chem. Soc.
2002, 124, 9696–9697. (b) Chang, H.-T.; Jayanth, T. T.; Wang, C.-C.;
Cheng, C.-H. J. Am. Chem. Soc. 2007, 129, 12032–12041. (c) Jeganmohan,
M.; Cheng, C.-H. Chem.—Eur. J. 2008, 14, 10876–10886. For
leading references to other classes of reductive couplings:(d) Moslin,
R. M.; Miller-Moslin, K.; Jamison, T. F. Chem. Commun. 2007,
4441–4449. (e) Bower, J. F.; Kim, I. S.; Patman, R. L.; Krische,
M. J. Angew. Chem., Int. Ed. 2009, 48, 34–46. (f) Skukcas, E.; Ngai,
M.-Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40,
1394–1401. (g) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.;
Micalizio, G. C. Eur. J. Org. Chem. 2010, 391–409.
(18) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki,
M. J. Am. Chem. Soc. 2004, 126, 7559–7570.
(19) Malik, H. A.; Sormunen, G. J.; Montgomery, J. J. Am. Chem. Soc.
2010, 132, 6304–6305.
(20) Chen, K.-M.; Gunderson, K. G.; Hardtmann, G. E.; Prasad, K.;
Repic, O.; Shapiro, M. J. Chem. Lett. 1987, 1923–1926.
(21) (a) Hratchian, H. P.; Chowdhury, S. K.; Gutierrez-Garcia,
V. M.; Amarasinghe, K. K. D.; Heeg, M. J.; Schlegel, H. B.; Montgomery,
J. Organometallics 2004, 23, 4636–4646. For related experimental
observations:(b) Ogoshi, S.; Ueta, M.; Arai, T.; Kurosawa, H. J. Am.
Chem. Soc. 2005, 127, 12810–12811.
(22) McCarren, P. R.; Liu, P.; Cheong, P. H.-Y.; Jamison, T. F.;
Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6654–6655.
(23) Herath, A.; Li, W.; Montgomery, J. J. Am. Chem. Soc. 2008,
130, 469–471.
’ REFERENCES
(1) (a) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887–2902.
(b) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247–12275.
(c) Welker, M. E. Chem. Rev. 1992, 92, 97–112. (d) Trost, B. M. Angew.
Chem., Int. Ed. 1986, 25, 1–20. (e) Nakamura, I.; Yamamoto, Y. Adv.
Synth. Catal. 2002, 344, 111–129.
(2) (a) Davies, H. M. L.; Xiang, B.; Kong, N.; Stafford, D. G. J. Am.
Chem. Soc. 2001, 123, 7461–7462. (b) Davies, H. M. L.; Hu, B. B.;
Saikali, E.; Bruzinski, P. R. J. Org. Chem. 1994, 59, 4535–4541.
(c) Barluenga, J.; Barrio, P.; Riesgo, L.; Lopez, L. A.; Tomas, M. J. Am.
Chem. Soc. 2007, 129, 14422–14426.
(3) (a) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005,
127, 16014–16015. (b) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010,
82, 1797–1812. (c) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003,
103, 1151–1196. (d) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.;
Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300–3302. (e) Qi, X.; Ready,
J. M. Angew. Chem., Int. Ed. 2008, 47, 7068–7070. (f) Liu, L.;
Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348–5349. (g) Ogoshi,
S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 5350–5351.
(4) (a) Schore, N. E. Org. React. 1991, 40, 1–90. (b) Brummond,
K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263–3283.
(5) (a) Trost, B. M.; Brown, R. E.; Toste, F. D. J. Am. Chem. Soc.
2000, 122, 5877–5878. (b) Koyama, I.; Kurahashi, T.; Matsubara, S.
J. Am. Chem. Soc. 2009, 131, 1350–1351.
(6) (a) For a review of allylsilane [3 + 2] cycloadditions, see: Masse,
C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293–1316. (b) Danheiser, R. L.;
Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103, 1604–1606.
(c) Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992,
57, 6094–6097.
14465
dx.doi.org/10.1021/ja206722t |J. Am. Chem. Soc. 2011, 133, 14460–14466