II,III
II,III
peaks of Ru2II,II/Ru2
in the SAM (Fig. 1). No downward
of the mixed-valence state Ru2
is even higher on the
or upward peaks are observed when the potential is swept
back to the reference potential (0.50 V), indicating that these
redox species are stable and no decomposition takes place in
the SAM during the potential cycles.
surface (Kc is 4.47 ꢁ 1010 against 1.34 ꢁ 109 in solution).
The information on the electronic structures of the SAMs
in three oxidation states, particularly the more stabilised
II,III
III,III
mixed-valence Ru2
state and the Ru2
state which is
Based on the comparison with the IR spectra for each
isolated diruthenium complex in the KBr matrix and CV
results (Fig. 1), IR bands at 1863 and 1969 cmꢀ1 can be
inaccessible in solution, has been provided by the in situ IR
absorption spectroscopy.
We thank financial supports from the NSFC (20625101,
20773128, 20821061 and 20931006), the 973 project
(2007CB815304) from MSTC, and the NSF of Fujian
Province (2008I0027). H.-X. Zhang is grateful to JSPS for a
postdoctoral fellowship.
II,III
II,II
assigned to n(CRC) of the Ru2
and Ru2
species,
respectively. Although the IR band at 1747 cmꢀ1 observed
on the surface could not be found in the KBr matrix, this band
III,III
can be definitely assigned to that of n(CRC) in the Ru2
species which is unable to isolate from solution. Therefore, all
three oxidation states (Ru2II,II, Ru2II,III, Ru2III,III) of 4Au have
been distinctly identified from the in situ IR measurements. As
Notes and references
II,III
1 (a) S. Szafert and J. A. Gladysz, Chem. Rev., 2003, 103, 4175;
(b) R. L. Carroll and C. B. Gorman, Angew. Chem., Int. Ed., 2002,
41, 4378.
2 (a) T. Ren, Organometallics, 2005, 24, 4854; (b) B. Xi and T. Ren,
C. R. Chim., 2009, 12, 321.
3 (a) P. Hamon, F. Justaud, O. Cador, P. Hapiot, S. Rigaut,
L. Toupet, L. Ouahab, H. Stueger, J.-R. Hamon and C. Lapinte,
J. Am. Chem. Soc., 2008, 130, 17372; (b) M. A. Fox, R. L. Roberts,
T. E. Baines, B. L. Guennic, J.-F. Halet, F. Hartl, D. S. Yufit,
D. Albesa-Jove, J. A. K. Howard and P. J. Low, J. Am. Chem.
Soc., 2008, 130, 3566; (c) C. Olivier, K. Costuas, S. Choua,
V. Maurel, P. Turek, J.-Y. Saillard, D. Touchard and S. Rigaut,
J. Am. Chem. Soc., 2010, 132, 5638.
4 C. Yin, G.-C. Huang, C.-K. Kuo, M.-D. Fu, H.-C. Lu, J.-H. Ke,
K.-N. Shih, Y.-L. Huang, G.-H. Lee, C.-Y. Yeh, C.-h. Chen and
S.-M. Peng, J. Am. Chem. Soc., 2008, 130, 10090.
5 A. S. Blum, T. Ren, D. A. Parish, S. A. Trammell, M. H. Moore,
J. G. Kushmerick, G.-L. Xu, J. R. Deschamps, S. K. Pollack and
R. Shashidhar, J. Am. Chem. Soc., 2005, 127, 10010.
6 (a) Z. Ng, K. P. Loh, L. Li, P. Ho, P. Bai and J. H. K.
Yip, ACS Nano, 2009, 3, 2103; (b) C. Hortholary, F. Minc,
C. Coudret, J. Bonvoisin and J.-P. Launay, Chem. Commun.,
2002, 1932.
soon as the electron transfer takes place from that of Ru2
at 0.50 V, a new peak appeared at 1747 cmꢀ1 (1eꢀ oxidation,
Ru2III,III) or 1969 cmꢀ1 (1eꢀ reduction, Ru2II,II) with the
disappearance of itself at 1863 cmꢀ1. As the RuII central ions
are oxidized to RuIII, electrons are expected to flow from
CRC to RuIII, the bond order of CRC is thus reduced
and the IR absorption band is shifted to lower frequency
(red-shift).12 Conversely, the reduction process of Ru ion will
induce a blue-shift. These results suggest that the oxidation of
the Ru ions can significantly affect the electronic state and thus
can give useful information for conjugation states of CRC
with the Ru ions. Firstly, it is interesting to note that the IR
II,III
band for the CRC bond at 0.5 V (corresponding to Ru2
)
gave a single narrow IR band, indicating that the electrons on
Ru ions should be definitely delocalized between RuII
and RuIII (i.e. RuII.5RuII.5 is a more reasonable notation for
the real mixed valence state of RuIIRuIII). Secondly, the peak
shifts for RuII,III/RuIII,III, RuII,III/RuII,II are 116 and 106 cmꢀ1
,
7 (a) T. Kurita, Y. Nishimori, F. Toshimitsu, S. Muratsugu,
S. Kume and H. Nishihara, J. Am. Chem. Soc., 2010, 132, 4524;
(b) Y. Nishimori, K. Kanaizuka, M. Murata and H. Nishihara,
Chem.–Asian J., 2007, 2, 367.
8 (a) J. Q. Liu, M. N. Paddon-Row and J. J. Gooding, J. Phys.
Chem. B, 2004, 108, 8460; (b) N. Madhiri and H. O. Finklea,
Langmuir, 2006, 22, 10643.
9 (a) S. Ye, W. Zhou, M. Abe, T. Nishida, L. Cui, K. Uosaki,
M. Osawa and Y. Sasaki, J. Am. Chem. Soc., 2004, 126, 7434;
(b) Y. Zhang, Y. Tong, M. Abe, K. Uosaki, M. Osawa, Y. Sasaki
and S. Ye, J. Mater. Chem., 2009, 19, 261; (c) W. Zhou, S. Ye,
M. Abe, T. Nishida, K. Uosaki, M. Osawa and Y. Sasaki,
Chem.–Eur. J., 2005, 11, 5040; (d) W. Zhou, Y. Zhang, M. Abe,
K. Uosaki, M. Osawa, Y. Sasaki and S. Ye, Langmuir, 2008, 24,
8027; (e) M. Osawa, In situ surface-enhanced infrared spectroscopy
of the electrode/solution interface, in Advances in Electrochemical
Science and Engineering, ed. R. C. Alkire, D. M. Kolb,
J. Lipkowski and P. N. Ross, Wiley, Weinheim, 2006, vol. 9,
p. 269; (f) M. Osawa, Bull. Chem. Soc. Jpn., 1997, 70, 2861.
10 M. Abe, T. Masuda, T. Kondo, K. Uosaki and Y. Sasaki, Angew.
Chem., Int. Ed., 2005, 44, 416.
respectively (Fig. 2). In the previous in situ IR studies on SAM of
the triruthenium cluster [Ru3(m3-O)(m-CH3COO)6(CO)(L1)(L2)]
(L1 = [(NC5H4)CH2NHC(O)(CH2)10S–]2, L2 = 4-methyl-
pyridine),9a–c Ye et al. reported that the first 1eꢀ oxidation
of the Ru central ions in the SAM induces a large blue-shift
for CO ligand (120 cmꢀ1) in comparison with its second 1eꢀ
oxidation (blue-shift, 54 cmꢀ1) and first 1eꢀ reduction
processes (red-shift, 50 cmꢀ1). The large blue-shift in the first
1eꢀ oxidation step has been successfully explained by the
electron localization on the Ru central ions where CO ligand
is directly binded. The similar IR peak shifts (116/106 cmꢀ1
)
and band width (ca. 20 cmꢀ1) for the oxidation and the
II,III
reduction processes of Ru2
in 4Au SAM indicate similar
influence on the CRC bonds by the two electron transfer
state
III,III
II,III
steps from Ru2II,III. This confirms that the Ru2
should be a delocalized system from which Ru2
II,II
and
are formed through 1eꢀ charge transfer steps with
Ru2
11 F. A. Murphy, S. Suarez, E. Figgemeier, E. R. Schofield and
´
S. M. Draper, Chem.–Eur. J., 2009, 15, 5740.
similar band shifts (Fig. 2).
12 (a) L.-B. Gao, S.-H. Liu, L.-Y. Zhang, L.-X. Shi and Z.-N. Chen,
Organometallics, 2006, 25, 506; (b) L.-B. Gao, J. Kan, Y. Fan,
L.-Y. Zhang, S.-H. Liu and Z.-N. Chen, Inorg. Chem., 2007, 46,
5651; (c) M. I. Bruce, P. J. Low, K. Costuas, J. F. Halet, S. P. Best
and G. A. Heath, J. Am. Chem. Soc., 2000, 122, 1949.
Butadiyne-linked diruthenium complex is successfully
immobilized onto a gold surface to form SAMs, in which
the Ru-centered redox chemistry is improved and stable mixed-
valence state is observed in a better quality. The stability
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 923–925 925