ORGANIC
LETTERS
2011
Vol. 13, No. 18
4906–4909
A New Strategy for the Synthesis of
Bisaminoacylated tRNAs
Ryan C. Nangreave, Larisa M. Dedkova, Shengxi Chen, and Sidney M. Hecht*
Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85827, United States
Received July 23, 2011
ABSTRACT
Tandemly activated tRNAs participate effectively in protein synthesis and exhibit superior chemical and biochemical stability compared to the
more commonly used singly aminoacylated tRNAs. While several bisaminoacylated tRNAs have been prepared via the T4 RNA ligase-mediated
condensation of bisaminoacylated pdCpAs and abbreviated tRNA transcripts (tRNA-COH), the bisaminoacylated pdCpAs are difficult to prepare
when using bulky amino acids. Described herein is a new strategy for preparing bisaminoacylated tRNAs, applicable even for bulky amino acids.
Chemically misacylated tRNAs have facilitated the in-
troduction of non-natural amino acids into proteins at
predetermined sites.1ꢀ6 This has enabled the detailed
investigation of thebiochemicaland biophysical properties
of numerous proteins.7ꢀ10 While monoaminoacylated
tRNAs are ordinarily used in protein synthesizing systems,
Lavrik and co-workers11 have described a phenylalanyl-
tRNA synthetase from Thermus thermophilus that can
incorporate more thanone molecule of phenylalanine onto
tRNAPhe, producing bis- (20,30-O-phenylalanyl)-tRNAs.
Our laboratory has shown that such bisaminoacylated
tRNAs can be prepared in vitro and employed for cell free
protein synthesis; these species have the advantages of
improved chemical and biochemical stabilities, as well as
their ability to participate in two cycles of peptide elon-
gation.12 Under protein synthesizing conditions limiting
(1) Heckler, T. G.; Zama, Y.; Naka, T.; Hecht, S. M. J. Biol. Chem.
1983, 258, 4492.
(2) Heckler, T. G.; Chang, L. H.; Zama, Y.; Naka, T.; Hecht, S. M.
Tetrahedron 1984, 40, 87.
(3) Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G.
Science 1989, 244, 182.
(4) Heckler, T. G.; Chang, L. H.; Zama, Y.; Naka, T.; Chorghade,
M. S.; Hecht, S. M. Biochemistry 1984, 23, 1468.
(5) Baldini, G.; Martoglio, B.; Schachenmann, A.; Zugliani, C.;
Brunner, J. Biochemistry 1988, 27, 7951.
(6) Hecht, S. M. In Protein Engineering; RajBhandary, U. L., Koehrer,
C., Eds.; Springer: New York, 2008; pp 251ꢀ266.
(7) Ellman, J. A.; Mendel, D.; Schultz, P. G. Science 1992, 255, 197.
(8) Karginov, V. A.; Mamaev, S. V.; An, H.; Van Cleve, M. D.;
Hecht, S. M.; Komatsoulis, G. A.; Abelson, J. N. J. Am. Chem. Soc.
1997, 119, 8166.
(11) (a) Stepanov, V. G.; Moor, N. A.; Ankilova, V. N.; Lavrik, O. I.
FEBS Lett. 1992, 311, 192. (b) Stepanov, V. G.; Moor, N. A.; Ankilova,
V. N.; Sukhanova, M. V.; Lavrik, O. I. Biochim. Biophys. Acta 1998,
1386, 1.
(12) (a) Wang, B.; Zhou, J.; Lodder, M.; Anderson, R. D.; Hecht,
S. M. J. Biol. Chem. 2006, 281, 13865. (b) Duca, M.; Maloney, D. J.;
Lodder, M.; Wang, B.; Hecht, S. M. Bioorg. Med. Chem. 2007, 15, 4629.
(c) Maloney, D. J.; Ghanem, N.; Zhou, J.; Hecht, S. M. Org. Biomol.
Chem. 2007, 5, 3135. (d) Duca, M.; Chen, S.; Hecht, S. M. Methods 2008,
44, 87. (e) Duca, M.; Chen, S.; Hecht, S. M. Org. Biomol. Chem. 2008, 6,
3292. (f) Duca, M.; Trindle, C.; Hecht, S. M. J. Am. Chem. Soc. 2011,
133, 11368.
(9) England, P. M.; Lester, H. A.; Dougherty, D. A. Biochemistry
1999, 38, 14409.
(10) Yakovleva, L.; Chen, S.; Hecht, S. M.; Shuman, S. J. Biol. Chem.
2008, 283, 16093.
r
10.1021/ol201993c
Published on Web 08/23/2011
2011 American Chemical Society