Crystal Growth & Design
ARTICLE
oxalate and its hydrate display motif R21(5) between the base and
the acid.
The number of weak and strong hydrogen bonds in the
studied neutral cocrystals is an approximate guide for predicting
melting points. In the studied neutral cocrystals using the
(17) Bowes, K. F.; Ferguson, G.; Lough, A. J.; Glidewell, C. Acta
Crystallogr., Sect. B 2003, 59, 100–117.
(18) Zhang, J.; Wu, L.; Fan, Y. J. Mol. Struct. 2003, 660, 119–129.
(19) Pan, Y.; Li, K.; Bi, W.; Li, J. Acta Crystallogr., Sect. C 2008,
64, o41–o43.
(20) Jin, Z.-M.; Feng, H.; Tu, B.; Li, M.-C.; Hu, M.-L. Acta Crystal-
logr., Sect. C 2005, 61, o593–o595.
(21) Koshima, H.; Nakagawa, T.; T.Matsuura, T.; Miyamoto, H.;
Toda, F. J. Org. Chem. 1997, 62, 6322–6325.
(22) Koshima, H.; Hayashi, E.; Matsuura, T.; Tanaka, K.; Toda, F.;
Kato, M.; Kiguchi, M. Tetrahedron Lett. 1997, 38, 5009–5012.
(23) Koshima, H.; Ding, K.; Chisaka, Y.; Matsuura, T.; Miyahara, I.;
Hirotsu, K. J. Am. Chem. Soc. 1997, 119, 10317–10324.
(24) Koshima, H.; Ding, K.; Matsuura, T. J. Chem. Soc., Chem.
Commun. 1994, 2053–2054.
approximation that the strength of a weak CÀH O hydrogen
3 3 3
bond is equal to 33% of a strong OÀH N (or O) hydrogen
3 3 3
bond, it is possible to correlate the melting points of the
cocrystals with the number of hydrogen bonds in the cocrystal
and the respective dibasic acid. The number of hydrogen bonds
in the cocrystal structures reported here is either less than or
almost equal to that of the dicarboxylic acid and the melting
points are below those of the dicarboxylic acids. Examining
the densities of both cocrystals and the dicarboxylic acids, the
cocrystals have lower densities and lower melting points. While
there does not seem to be a monotonic trend, the results indicate
that packing in the unit cell as well as the number and type of
hydrogen bonds has an influence on the melting point of the
cocrystal.
(25) Koshima, H.; Matsushige, K.; Miyauchi, M.; Fujita, J. Tetra-
hedron 2000, 56, 6845–6852.
(26) Nonius, COLLECT: KappaCCD Software; Nonius BV: Delft,
The Netherlands, 1998.
(27) Altomare, A.; Cascarano, G.; Giacovazzo, G.; Guagliardi, A.;
Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
(28) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122.
(29) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.
(30) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K;
Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
(31) Spek, A. L. Acta Crystallogr., Sect. D 2009, 65, 148–155.
(32) Allen, F. H. Acta Crystallogr., Sect. B 2002, 58, 380–388.
(33) Jayasankar, A.; Reddy, L. S.; Bethune, S. J.; Rodríguez-Hornedo,
N. Cryst. Growth Des. 2009, 9, 889–897.
’ ASSOCIATED CONTENT
S
Supporting Information. DTA/TGA data and X-ray
b
crystallographic information files (CIF) are available. The crystal
structures in this paper have been deposited at the Cambridge
Crystallographic Data Centre with deposition numbers CCDC
816162 (1), 816163 (2), 791362 (3), 816166 (4), 791363 (5),
816165 (6), and 816164 (7). This material is available free of
(34) Olenik, B.; Smolka, T.; Boese, R.; Sustmann, R. Cryst. Growth
Des. 2003, 3, 183–188.
(35) Cowan, J. A.; Howard, J. A. K.; Puschmann, H.; Williams, I. D.
Acta Crystallogr., Sect. E 2007, 63, o1240–o1242.
(36) Newkome, G. R.; Theriot, K. J.; Fronczek, F. R. Acta Crystal-
logr., Sect. C 1985, 41, 1642–1644.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: veidis@lu.lv.
(37) Rajagopal, K.; Tamilselvi, V.; Krishnakumar, R. V.; Natarajan, S.
Acta Crystallogr., Sect. E 2003, 59, o742–o744.
(38) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 87th
ed.; CRC Press: Boca Raton, FL, 2006À2007.
’ REFERENCES
(39) Steiner, T. Crystallogr. Rev. 2003, 9, 177–228.
(40) Vishweshwar, P.; Nangia, A.; Lynch, V. M. Cryst. Growth Des.
2003, 3, 783–790.
(1) Desiraju, G. R. J. Mol. Struct. 2003, 656, 5–15.
(2) Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311–2327.
(3) Basavoju, S.; Bostr€om, D.; Velaga, S. P. Cryst. Growth Des. 2006,
6, 2699–2708.
(41) Brittain, H. G. Am. Pharm. Rev. 2009, 12, 62–65.
(4) Reddy, L. S.; Bethune, S. J.; Kampf, J. W.; Rodríguez-Hornedo,
N. Cryst. Growth Des. 2009, 9, 378–385.
(5) Cheney, M. L.; Shan, N.; Healey, E. R.; Hanna, M.; Wojtas, L.;
Zaworotko, M. J.; Sava, V.; Song, S.; Sanchez-Ramos, J. R. Cryst. Growth
Des. 2010, 10, 394–405.
(6) Batchelor, E.; Klinowski, J.; Jones, W. J. Mater. Chem. 2000, 10,
839–848.
(7) Haynes, D. A.; Jones, W.; Motherwell, W. D. S. CrystEngComm
2006, 8, 830–840.
(8) Shan, N.; Bond, A. D.; Jones, W. Cryst. Eng. 2002, 5, 9–24.
(9) Shan, N.; Batchelor, E.; Jones, W. Tetrahedron Lett. 2002, 43,
8721–8725.
(10) Smolka, T.; Schaller, T.; Sustmann, R.; Bl€aser, D.; Boese, R.
J. Prakt. Chem. 2000, 342, 465–472.
(11) Mei, X.; Wolf, C. Eur. J. Org. Chem. 2004, 4340–4347.
(12) Dale, S. H.; Elsegood, M. R. J.; Hemmings, M.; Wilkinson, A. L.
CrystEngComm 2004, 6, 207–214.
(13) Bhogala, B. R.; Basavoju, S.; Nangia, A. Cryst. Growth Des. 2005,
5, 1683–1686.
(14) Johnson, S. L.; Rumon, K. A. J. Phys. Chem. 1965, 69, 74–86.
(15) Bhogala, B. R.; Basavoju, S.; Nangia, A. CrystEngComm 2005,
7, 551–562.
(16) Childs, S. L.; Stahly, G. P.; Park, A. Mol. Pharmaceutics 2007,
4, 323–338.
4016
dx.doi.org/10.1021/cg200573m |Cryst. Growth Des. 2011, 11, 4009–4016