166
G.-P. Shen et al. / Journal of Molecular Structure 1002 (2011) 159–166
3.6. UV–vis spectrum
References
[1] M.H. Klingele, S. Brooker, Coord. Chem. Rev. 241 (2003) 119.
[2] J.A. Kitchen, S. Brooker, Coord. Chem. Rev. 252 (2008) 2072.
[3] D. Zhu, Y. Xu, Z. Yu, Z. Guo, H. Sang, T. Liu, X. You, Chem. Mater. 14 (2002) 838.
[4] J. Zhou, J. Yang, L. Qi, X. Shen, D. Zhu, Y. Xu, Y. Song, Trans. Metal Chem. 32
(2007) 711.
[5] J.A. Kitchen, A. Noble, C.D. Brand, B. Moubaraki, K.S. Murray, S. Brooker, Inorg.
Chem. 47 (2008) 9450.
[6] J.A. Kitchen, G.N.L. Jameson, V.A. Milway, J.L. Tallon, S. Brooker, Dalton Trans.
39 (2010) 7637.
In the UV–vis spectrum of the complex 1 (or 2) in acetonitrile
solution, two intense bands at 313 (or 319) and 332 (or 338) nm
are attributed to the L
p–
pꢃ and n–pꢃ transitions in contrast to
those (228 and 281 nm) in the free L–acetonitrile solution. One
band at 647 nm corresponding to the d–d transition is observed
for 2, but no band in the region for 1.
[7] S.P. Zhang, Z.D. Liu, S.D. Chen, S. Yang, S.C. Shao, Acta Crystallogr. E62 (2006)
o1516.
3.7. Electrospray ionization mass spectrometry (ESI-MS)
[8] Z.D. Liu, S.P. Zhang, Y. Wei, S.C. Shao, Acta Crystallogr. E63 (2007) o4634.
[9] X.N. Gong, Z.X. Wang, Y. Liu, Acta Crystallogr. E65 (2009) o3214.
[10] L.T. Yuan, H. Zhang, Z.X. Wang, Acta Crystallogr. E65 (2009) o1225.
[11] J. Zhao, G.-P. Shen, Y. Zhang, X. Shen, D.-R. Zhu, J. Heterocycl. Chem. (2011), in
press.
[12] S.P. Zhang, Z.D. Liu, S.C. Shao, Acta Crystallogr. E62 (2006) o1279.
[13] S.P. Zhang, Z.L. You, S.C. Shao, H.L. Zhu, Acta Crystallogr. E61 (2005) o8.
[14] S.P. Zhang, H.J. Liu, S.C. Shao, Y. Zhang, D.G. Sun, S. Yang, H.L. Zhu, Acta
Crystallogr. E60 (2004) o1113.
[15] S.P. Zhang, Z.D. Liu, S. Yang, X.Y. Qiu, S.C. Shao, Acta Crystallogr. E61 (2005)
o3108.
[16] D.-R. Zhu, Y. Song, Y. Xu, Y. Zhang, S.S.S. Raj, H.-K. Fun, X.-Z. You, Polyhedron 19
(2000) 2019.
The structures of L, 1 and 2 in methanol solution were also stud-
ied by electrospray ionization mass spectrometry (ESI-MS) [33–
35]. Fig. 9a displays the positive ESI mass spectrum of L and the
base peak at m/z 409.2 is [L + H]+ ion. Fig. 9b shows the positive
ESI mass spectrum of 1 and the base peak at m/z 927.58 is
[MnL2(NCS)]+ ion. Fig. 9c displays the positive ESI mass spectrum
of 2 and three main peaks were observed. The base peak at m/z
915.00 is [Cu(L-OCH3)2(ClO4)]+ ion. The peaks at m/z 837.17,
642.92 and 431.33 are [NaL2]+, [CuL3]2+, [NaL]+ ion, respectively.
In addition, it should be mentioned that the formation of the differ-
ent aggregates in the ESI-MS spectra of 2 can be influenced by the
concentration of the complex [36].
[17] S.P. Zhang, Z.L. You, S.C. Shao, H.L. Zhu, Acta Crystallogr. E61 (2005) o27.
[18] H.J. Liu, S.C. Shao, S.P. Zhang, S. Yang, F.Y. Hao, C.P. Li, H.L. Zhu, Acta Crystallogr.
E60 (2004) o722.
[19] J.A. Kitchen, N.G. White, M. Boyd, B. Mounaraki, K.S. Murray, P.D.W. Boyd, S.
Brooker, Inorg. Chem. 48 (2009) 6670.
[20] J. Zhao, H.-M. Cheng, G.-P. Shen, Y. Xu, D.-R. Zhu, J. Coord. Chem. 64 (2011) 942.
[21] M.H. Klingele, S. Brooker, Inorg. Chim. Acta 357 (2004) 3413.
[22] L. Qi, D.-R. Zhu, D.-J. Xie, Y.-F. Wu, X. Shen, Chin. J. Inorg. Chem. 24 (2008) 868.
[23] M.H. Klingele, P.D.W. Boyd, B. Moubaraki, K.S. Murray, S. Brooker, Eur. J. Inorg.
Chem. (2000) 573.
[24] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[25] J. Zhao, W. Lu, L. Chen, X. Shen, Y. Xu, D.R. Zhu, Chin. J. Inorg. Chem. 27 (2011)
743.
[26] D.-R. Zhu, T.-W. Wang, S.-L. Zhong, Y. Xu, X.-Z. You, Chin. J. Inorg. Chem. 20
(2004) 508.
[27] D. Zhu, Y. Xu, Y. Mei, Y. Shi, C. Tu, X. You, J. Mol. Struct. 559 (2001) 119.
[28] W. Lu, D.-R. Zhu, Y. Xu, H.-M. Cheng, J. Zhao, X. Shen, Struct. Chem. 21 (2010)
237.
4. Conclusions
Two new mononuclear complexes with 3-(p-methoxyphenyl)-
4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole (L), trans-[MnL2-
(NCS)2] (1) and trans-[CuL2(ClO4)2] (2) have been synthesized,
and their molecular structures determined by X-ray crystallogra-
phy, UV, IR and ESI-MS. Structural analyses indicate that it is the
first observation that the triazole–pyridyl twist angle of the
triaryltriazole in the complexes is larger than that in the free L li-
gand. This abnormal conformation change is due to the existence
of different intermolecular and intramolecular hydrogen bonds
[29] Z. Wang, Y. Lan, P. Wu, L. Huang, Acta Crystallogr. E64 (2008) m593.
[30] Z.X. Wang, X.N. Gong, Z.R. Qu, P.F. Wu, X.M. Zhang, Chin. J. Inorg. Chem. 25
(2009) 567.
[31] S.H. Rahaman, D. Bose, R. Ghosh, G. Mostafa, H.K. Fun, B.K. Ghosh, Struct.
Chem. 18 (2007) 237.
and
p p stacking interactions in the crystal structures of the free
ꢀ ꢀ ꢀ
ligand and its complexes.
[32] B.J. Hathaway, A.A.G. Tomlinson, Coord. Chem. Rev. 5 (1970) 1.
[33] V. Katta, S.K. Chowdhury, B.T. Chait, J. Am. Chem. Soc. 112 (1990) 5348.
[34] S.R. Wilson, A. Yasmin, Y. Wu, J. Org. Chem. 57 (1992) 6941.
[35] R. Arakama, T. Matuo, H. Ito, I. Katakuse, K. Nozaki, T. Ohno, M. Haga, Mass
Spectrom. 29 (1994) 289.
Acknowledgments
This work was funded by the National Nature Science Founda-
tion of China (Nos. 20771059, 20971068 and 20976082) and the
Natural Science Foundation of Jiangsu Province (BK2008371).
[36] Z. Fei, D. Zhao, T.J. Geldbach, R. Scopelliti, P.J. Dyson, Eur. J. Inorg. Chem. (2005)
860.