Financial support from the European Research Council under
the European Community’s Seventh Framework Programme
(FP7/2008-2013) ERC grant agreement no. 208702; Region
Aquitaine; Ministere de la Recherche et de l’Enseignement
Superieur (P.B) is gratefully acknowledged.
´
´
Notes and references
1 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) A. C. Benniston and G. Copley, Phys. Chem. Chem. Phys.,
2009, 11, 4124; (c) R. Ziessel, G. Ulrich and A. Harriman, New J.
Chem., 2007, 31, 496; (d) C. Nicoli, J. Baranski, S. Schlummer,
J. Palomo, M. Lumbierres-Burgues, M. Kahms, J. Kuhlmann,
S. Sanchez, E. Gratton, H. Waldmann and R. Winter, J. Am.
Chem. Soc., 2006, 128, 192; (e) F. Bestvater, E. Spiess,
G. Strobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-
Pfannschmidt, C. Wostlaw and H. Acker, J. Microsc., 2002,
208, 108; (f) C. Trieflinger, K. Rurack and J. Daub, Angew. Chem.,
Fig. 2 Single molecule emission of 1 in PMMA (lex = 488 nm, lem
>
500 nm): (a) emission trajectory of a single molecule (number of
photons detected per ms); (b–c) distribution for 82 single molecules
of: the total duration of emission before photobleaching (b); the decay
time (c); correlation between the decay time and the average number of
counts emitted before photobleaching (d).
Int. Ed., 2005, 44, 2288; (g) F. Bergstrom, I. Mikhalyov,
¨
P. Hagglof, R. Wortmann, T. Ny and L. B.-A. Johansson,
¨
J. Am. Chem. Soc., 2002, 124, 196.
¨
2 For examples of BODIPY–protein conjugates, see: (a) J. Lee,
S. Lee, D. Zhai, Y. Ahn, H. Yun Yeo, Y. Ling and T. Chang,
Chem. Commun., 2011, 47, 4508; (b) S. Niu, C. Massif, G. Ulrich,
R. Ziessel, P. Renard and A. Romieu, Org. Biomol. Chem., 2011,
9, 66; (c) D. Wang, J. Fan, X. Gao, B. Wang, S. Sun and X. Peng,
OFF states. For 50% of 82 molecules of 1 the peak emission
intensity reflecting the brightness reached at least 5.3 Â 103
photons sÀ1 detected, and up to 2.9 Â 104 photons sÀ1. These
values are in agreement with a maximum theoretical upper
limit of 2.9 Â 105 photons sÀ1 emitted,15,16 but lower due to
losses resulting from the random orientation of the molecules
relative to the excitation beam polarization and the instrumental
detection efficiency. From 50% of the molecules, we have
detected at least 2.1 Â 104 photons and in the best case up to
2.4 Â 105 photons before photobleaching (Fig. S19 in ESIw).
Considering the same limitations as above, this reflects the
measured 1/Fbleach = 3.7 Â 104 photons in solution and is in
agreement with known organic emitters.16 This emission occurs
within 11 seconds for 50% of the molecules and the duration
can reach 1 minute (Fig. 2b). The distribution of decay times
of 1 is represented in the bar chart in Fig. 2c, peaking around
4.9 ns and displaying some longer values around 6.8 ns. The
average decay time is 5.1 ns, with a standard deviation of 0.9 ns,
and is thus only slightly shorter than in THF solutions. This
could result from an enhanced non-radiative deactivation of
the excited states in the polymer environment.
J. Org. Chem., 2009, 74, 7675; (d) M. Isaksson, P. Hagglof,
¨
¨
P. Hakansson, T. Ny and L. Johansson, Phys. Chem. Chem. Phys.,
2007, 9, 3914.
3 (a) X. F. Zhou, Acta Crystallogr., Sect. E, 2010, 66, o757N;
(b) O. Galangau, C. Dumas-Verdes, R. Me
G. Clavier, Org. Biomol. Chem., 2010, 8, 4546.
4 (a) N. Basarıc, M. Baruah, W. Qin, B. Metten, M. Smet,
´
allet-Renault and
´
W. Dehaen and N. Boens, Org. Biomol. Chem., 2005, 3, 2755.
5 (a) D.-C. Wang, C. He, J.-L. Fan, W.-W. Huang and X.-J. Peng,
Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, 63, o2900;
(b) Y.-H. Yu, Z. Shen, H.-Y. Xu, Y.-W. Wang, T. Okujima,
N. Ono, Y.-Z. Li and X.-Z. You, J. Mol. Struct., 2007, 827, 130.
6 C. R. Becer, R. Hoogenboom and U. S. Schubert, Angew. Chem.,
Int. Ed., 2009, 48, 4900.
7 V. Leen, F. Schevenels, J. Cui, C. Xu, W. Yang, X. Tang, W. Liu,
W. Qin, W. M. De Borggraeve, N. Boens and W. Dehaen, Eur. J.
Org. Chem., 2009, 5920.
8 (a) C. Goze, G. Ulrich, L. J. Mallon, B. D. Allen, A. Harriman and
R. Ziessel, J. Am. Chem. Soc., 2006, 128, 10231; (b) G. Ulrich,
C. Goze, M. Guardigli, A. Roda and R. Ziessel, Angew. Chem., Int.
Ed., 2005, 44, 3694; (c) C. Tahtaoui, C. Thomas, F. Rohmer,
P. Klotz, G. Duportail, Y. Mely, D. Bonnet and M. Hibert, J. Org.
´
Chem., 2007, 72, 269; (d) Y. Gabe, T. Ueno, Y. Urano, H. Kojima
and T. Nagano, Anal. Bioanal. Chem., 2006, 386, 621;
(e) T. Rohand, M. Baruah, W. Qin, N. Boens and W. Dehaen,
Chem. Commun., 2006, 266.
Interestingly, a small population of molecules shows longer
decay times and emits a higher average total amount of photons
(Fig. 2d). In a previous study of single molecules in PMMA,17
two populations of emitters were also observed and the minor
one was attributed to molecules embedded in the more rigid
micro-environments of PMMA. 1 shows thus some sensitivity to
the environment while preserving suitable emissive properties.
In conclusion, perfluorophenyl rings can be readily and
selectively functionalised through C–N and C–S bond formation,
for example in a BODIPY chromophore derivative. These
conjugates are extremely photostable with high absorption
and emission in an organic solvent. In aqueous mixtures, high
selectivity for thiol vs. amine ( Z100-fold) conjugate formation
conspires with the 90-fold higher quantum yield to make the
thiol conjugate label particularly attractive. Applications in
labelling and staining are thus envisaged, which can in prin-
ciple similarly be applied to other fluorophores encompassing
the perfluorophenyl motif.
9 Fluorescein standard, Ff
= 0.95 in 0.1 M NaOH (aq);
J. H. Brannon and D. Magde, J. Phys. Chem., 1978, 82, 705.
10 (a) S. J. Strickler and R. A. Berg, J. Chem. Phys., 1962, 37,
814; (b) J. B. Birks, Photophysics of aromatic molecules, Wiley
Interscience, London, Date: 1970.
11 P. Meallier, S. Guittonneau, C. Emmelin and T. Konstantinova,
Dyes Pigm., 1999, 40, 95.
12 F. Puntoriero, F. Nastasi, S. Campagna, T. Bura and R. Ziessel,
Chem.–Eur. J., 2010, 16, 8832.
13 C. Giansante, G. Raffy, C. Schafer, H. Rahma, M.-T. Kao,
¨
A. G. L. Olive and A. Del Guerzo, J. Am. Chem. Soc., 2011, 133, 316.
=
14 Although the absorption and emission would be higher at lex
514 or 516 nm, this wavelength was not available on our micro-
scopy setup. 0.1 nM of 1 were dissolved in deoxygenated THF with
PMMA (10 mg mLÀ1) and spin-coated on a glass slide. Measure-
ments performed at 22 1C.
15 Assuming the same absorption cross-section and emission quantum
yield of 1 in PMMA and in solution.
16 W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum., 2003,
74, 3597.
17 Y. Hou, A. M. Bardo, C. Martinez and D. A. Higgins, J. Phys.
Chem. B, 2000, 104, 212.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10425–10427 10427