FULL PAPERS
Dianjun Li et al.
[5] a) L. Benati, G. Bencivenni, R. Leardini, M. Minozzi,
D. Nanni, R. Scialpi, P. Spagnolo, G. Zanardi, Org.
Lett. 2006, 8, 2499–2502; b) L. Benati, G. Bencivenni,
R. Leardini, M. Minozzi, D. Nanni, R. Scialpi, P. Spag-
nolo, G. Zanardi, J. Org. Chem. 2006, 71, 5822–5825;
c) H. Zhai, M. Zlotorzynska, G. Sammis, Chem.
Commun. 2009, 45, 5716–5718; d) G. Bencivenni, T.
Lanza, M. Minozzi, D. Nanni, P. Spagnolo, G. Zanardi,
Org. Biomol. Chem. 2010, 8, 3444–3450.
[6] a) P. C. Montevecchi, M. L. Navacchia, P. Spagnolo, J.
Org. Chem. 1997, 62, 5846–5848; b) G. Bencivenni, T.
Lanza, R. Leardini, M. Minozzi, D. Nanni, P. Spagnolo,
G. Zanardi, J. Org. Chem. 2008, 73, 4721–4724; c) T.
Lanza, R. Leardini, M. Minozzi, D. Nanni, P. Spagnolo,
G. Zanardi, Angew. Chem. 2008, 120, 9581–9584;
Angew. Chem. Int. Ed. 2008, 47, 9439–9442; d) T.
Lanza, M. Minozzi, A. Monesi, D. Nanni, P. Spagnolo,
G. Zanardi, Adv. Synth. Catal. 2010, 352, 2275–2280.
[7] S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima,
T. C. S. Pace, C. Bohne, A. D. Gudmundsdottir, Org.
Lett. 2009, 11, 2345–2348.
General Procedure for the Reaction of 7 under an O2
Atmosphere
To a 25-mL sealed tube equipped with a magnetic stirring
bar were added 7 (0.5 mmol, 1.0 equiv.), tetrabutylammoni-
um iodide (TBAI, 277 mg, 1.5 equiv.), tert-butyl hydroperox-
ide (TBHP, ~5.5M in decane) (185 mL, 2.0 equiv.), sodium
tert-butoxide (t-BuONa, 145 mg, 3.0 equiv.) and DCE
(5.0 mL). The solution was stirred in an oil bath at 808C
under an oxygen atmosphere. After the reaction was com-
plete as indicated by TLC (generally 1–1.5 h), the reaction
mixture was poured into a saturated aqueous NaHSO3 solu-
tion (15 mL), and was extracted with EtOAc (10 mL3).
The combined organic layers were washed with brine
(30 mL) and dried with anhydrous Na2SO4. The solvent was
removed under reduced pressure, and the residual was treat-
ed by silica gel chromatography to give products 8.
Caution: tert-butyl hydroperoxide is hazardous and flam-
mable. When used in the presence of oxygen it should be
handled with care and proper protections.
[8] Y.-F. Wang, K. K. Toh, E. P. J. Ng, S. Chiba, J. Am.
Chem. Soc. 2011, 133, 6411–6421.
Acknowledgements
[9] a) A. G. Fallis, I. M. Brinza, Tetrahedron 1997, 53,
17543–17594; b) L. Stella, Nitrogen-centered radicals,
in: Radicals in Organic Synthesis, (Eds.: P. Renaud,
M. P. Sibi), John Wiley & Sons, Chichester, 2001,
pp 407–426; c) S. Z. Zard, Chem. Soc. Rev. 2008, 37,
1603–1618; d) M. Kitamura, K. Narasaka, Bull. Chem.
Soc. Jpn. 2008, 81, 539–547; e) X. Xu, X. Wan, Y.
Geng, J. Zhang, H. Xu, Chin. J. Org. Chem. 2011, 81,
453–465; f) S. Chiba, Bull. Chem. Soc. Jpn. 2013, 86,
1400–1411.
The authors thank the National Natural Science Foundation
of China (No. 21372108) for financial support.
References
[1] a) M. Minozzi, D. Nanni, P. Spagnolo, Chem. Eur. J.
2009, 15, 7830–7840; b) C. Jimeno, P. Renaud, Radical
Chemistry with Azides, in: Organic Azides: Syntheses
and Applications, (Eds.: S. Bräse, K. Banert) John
Wiley & Sons, Chichester, 2010, pp 239–267; c) D.
Nanni, P. Spagnolo, Unusual Radical Acceptors, in: En-
cyclopedia of Radicals in Chemistry, Biology and Mate-
rials, (Eds.: C. Chatgilialoglu, A. Studer), John Wiley &
Sons, Chichester, 2012, Vol. 2, pp 1019–1058.
[2] For free radical azide transfer reactions, see: a) V. V.
Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J. Simonsen,
J. K. Woodward, B. Mismash, J. T. Bolz, J. Am. Chem.
Soc. 1996, 118, 5192–5197; b) P. Panchaud, L. Chabaud,
Y. Landais, C. Ollivier, P. Renaud, S. Zigmantas, Chem.
Eur. J. 2004, 10, 3606–3614; c) G. Lapointe, A. Kapat,
K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84,
1633–1641.
[3] For recent examples dealing with azidyl radicals, see:
a) K. Matcha, R. Narayan, A. P. Antonchick, Angew.
Chem. 2013, 125, 8143–8147; Angew. Chem. Int. Ed.
2013, 52, 7985–7989; b) X.-H. Wei, Y.-M. Li, A.-X.
Zhou, T.-T. Yang, S.-D. Yang, Org. Lett. 2013, 15, 4158–
4161; c) Y. Yuan, T. Shen, K. Wang, N. Jiao, Chem.
Asian J. 2013, 8, 2932–2935; d) B. Zhang, A. Studer,
Org. Lett. 2013, 15, 4548–4551.
[4] a) S. Kim, G. H. Joe, J. Y. Do, J. Am. Chem. Soc. 1994,
116, 5521–5522; b) B. Patro, J. A. Murphy, Org. Lett.
2000, 2, 3599–3601; c) D. Lizos, R. Tripoli, J. A.
Murphy, Chem. Commun. 2001, 37, 2732–2733; d) S.
Zhou, S. Bommezijn, J. A. Murphy, Org. Lett. 2002, 4,
443–445.
[10] S. Chiba, L. Zhang, J.-Y. Lee, J. Am. Chem. Soc. 2010,
132, 7266–7267.
[11] For recent synthetic studies in Chibaꢀ group concerning
the Cu-iminyl radicals, see: a) L. Zhang, G. Y. Ang, S.
Chiba, Org. Lett. 2010, 12, 3682–3685; b) L. Zhang,
G. Y. Ang, S. Chiba, Org. Lett. 2011, 13, 1622–1625;
c) Y. L. Tnay, C. Chen, Y. Y. Chua, L. Zhang, S. Chiba,
Org. Lett. 2012, 14, 3550–3553.
[12] Z.-S. Li, W.-X. Wang, J.-D. Yang, Y.-W. Wu, W. Zhang,
Org. Lett. 2013, 15, 3820–3823.
[13] L. Ma, X. Wang, W. Yu, B. Han, Chem. Commun.
2011, 47, 11333–11335.
[14] D. Li, W. Yu, Adv. Synth. Catal. 2013, 355, 3708–3714.
[15] D. Li, T. Yang, H. Su, W. Yu, Adv. Synth. Catal. 2014,
356, 3148–3156. This paper has been retracted at the
agreement of the Editorial Office and John Wiley &
Sons, Ltd., see: Adv. Synth. Catal. 2015, 357, 601. The
main reason why we wrongly assigned the structures of
1 was that, in MS measurement of the first batch of
compounds, compound 1p showed a molecular weight
of 370.1863 (calcd. for C19H20N4O3 +NH4: 370.1874), in-
dicating the existence of N3 group. Later on, this mea-
surement was proved to be wrong. We let the sample
of the same molecule be measured two more times,
and both datasets showed the loss of N2. The convinc-
ing evidence for the structural difference between
1 and 7 came from the FT-IR data (see the Supporting
Information). In the FT-IR spectra of 7, a strong sharp
peak appears at about 2100 cmÀ1, which is caused by
2538
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2529 – 2539