5468
R. Sakhuja et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5465–5469
1996, 61, 8141; (b) Shaker, R. M. Phosphorus, Sulfur Silicon Relat. Elem. 1999,
149, 7; (c) Kamal, A.; Laxman, N.; Ramesh, G.; Neelima, K.; Kondapi, A. K. Chem.
Commun. 2001, 437; (d) Raasch, A.; Scharfenstein, O.; Traenkle, C.; Holzgrabe,
U.; Mohr, K. J. Med. Chem. 2002, 45, 3809.
10a–i were worthy for further investigations as potential antimi-
crobial agent.
For tested mono spiro-indoles 7a–c and bis spiro-indoles 10a–i,
the structural parameters of spacers including substituents, the
types of linkers and the lengths of aliphatic chains markedly influ-
enced their antimicrobial efficacy. Moreover, the antimicrobial po-
tency for spiro-indoles 7a–c and 10a–i, depended on the
substituent and lengths of aliphatic chains, and the activities
seemed to decrease with the increase of aliphatic chain length.
Obviously, the bridged linkers have large effect on their antimicro-
bial efficiency, and further works are essential in order to deduce
the structure–activity relationship.
Twenty five novel heterocycles including the intermediates were
synthesizedin good to excellentyields and fully characterizedonthe
basis of their detailed spectral studies. In summary, we have devel-
oped a clean and efficient methodology for the synthesis of novel
spiro[indole-thiazolidine]spiro[indole-pyran] derivatives; the two
spirocyclic heterocyclic systems being connected via N–(CH2)n –N
linker using molecular modification approach. The methodology
could be further extended and used for the synthesis of other asym-
metric bis(spiro-heterocycles) of biological importance.
11. Christoffers, J.; Mann, A. Angew. Chem. Int. Ed. 2001, 40, 4591.
12. (a) Jain, S. C.; Bhagat, S.; Rajwanshi, V. K.; Babu, B. R.; Sinha, J. Indian J. Chem. B
1997, 36B, 633; (b) Jain, M.; Khanna, P.; Saxena, A.; Bhagat, S.; Olsen, C. E.; Jain,
S. C. Synth. Commun. 2006, 36, 1863; (c) Jain, M.; Sakhuja, R.; Khanna, P.;
Bhagat, S.; Jain, S. C. Arkivoc 2008, 54; (d) Jain, S. C.; Khanna, P.; Bhagat, S.; Jain,
M.; Sakhuja, R. Phosphorus, Sulphur Silicon Relat. Elem. 2005, 180, 1829; (e)
Khanna, P.; Saxena, A.; Khanna, L.; Bhagat, S.; Jain, S. C. Arkivoc 2009, 119.
13. Representative procedure for 1-(6-bromohexyl)-5-methylindoline-2,3-dione
(3c): To a stirred solution of sodium hydride (40 mmol) in DMF (10 mL) was
added dropwise a solution of 5-methyl-1H-indol-2,3-dione (1c; 30 mmol) in
DMF (10 mL) during 20 min at ꢀ10 °C, under inert atmosphere of nitrogen. To
the deep purple colored suspension that resulted, 1,6-dibromohexane (2;
30 mmol) was added dropwise at the same temperature. The contents were
allowed to stir overnight at room temperature and thereafter quenched with
ice water to yield
a red colored semisolid. This was extracted with
dichloromethane (3 ꢁ 50 mL) and the organic layer was purified by flash
column chromatography in petroleum ether/dichloromethane (70:30) as
eluant to yield pure 3c as red microcrystals; IR
(KBr): 2936, 2854, 1737,
max
1620, 1610, 1482, 1463, 1347, 1260, and 1220 cmꢀ1.1H NMR (300 MHz, CDCl3):
dH 7.32 (m, 2H), 6.81 (m, 1H), 3.76 (t, J = 6.8 Hz, 2H), 3.38 (t, J = 6.9 Hz, 2H), 2.20
(s, 3H), 1.83 (m, 2H), 1.71 (m, 2H), 1.46 (m, 4H).13C NMR (75.47 MHz, CDCl3): dC
183.8, 174.0, 154.8, 137.1, 128.1, 126.0, 115.1, 113.0, 41.6, 34.6, 33.2, 29.7,
27.8, 27.6, 21.4. EIMS m/z (%): 325 (M++2, 28), 323 (M+, 30), 297 (15), 244 (M+-
Br, 12), 217 (50), 190 (38). Anal. Calcd for C15H18BrNO2: C, 55.57; H, 5.60; N,
4.32. Found: C, 55.72; H, 5.48; N, 4.43. This procedure for followed for all the
substrates.
Acknowledgments
14. Representative procedure for 1-(6-bromohexyl)-3-((1,5-dimethyl-3-oxo-
2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)imino)indolin-2-one (5a):
A mixture
N-(6-bromohexyl)indol-2,3-dione (3a; 9.5 mmol) and 4-amino-1,5-dimethyl-
2-phenyl-1H-pyrazol-3(2H)-one (4; 9.5 mmol) in absolute ethanol (20 mL) was
stirred at room temperature for 2 h. The colored solids thus obtained were
filtered and recrystallized from dichloromethane to yield Schiff’s base (5a) as
Authors (R.S. and S.K.) and author (S.S.P.) are thankful, respec-
tively, to CSIR and UGC, New Delhi for research fellowship.
orange solid; IR
(KBr): 2931, 2858, 1714, 1648, 1605, 1548, 1487, 1432,
max
Supplementary data
1357, 1310, and 1247 cmꢀ1 1H NMR (300 MHz, CDCl3): dH 7.44 (m, 5H), 7.34
.
(m, 2H), 7.05 (t, J = 7.3 Hz, 1H), 6.81 (d, J = 8.2 Hz,1H), 3.77 (t, J = 6.9 Hz, 2H),
3.39 (t, J = 6.8 Hz, 2H), 3.26 (s, 3H), 2.46 (s, 3H), 1.86 (m, 2H), 1.82 (m, 2H), 1.46
(m, 4H). 13C NMR (75.47 MHz, CDCl3): dC 171.2 (C-2), 161.3, 138.1 (C-3), 132.1–
108.2 (aromatic carbons), 39.9, 35.8, 33.6, 32.5, 27.7, 27.5, 27.2, 11.3. EIMS m/z
(%): 496 (M++2, 60), 494 (M+, 58), 450 (12), 415 (M+-Br, 6), 291 (32), 240 (19).
Anal. Calcd for C25H27BrN4O2: C, 60.61; H, 5.49; N, 11.31. Found: C, 60.48; H,
5.56; N, 11.29. This procedure for followed for all the substrates.
Supplementary data associated with this article can be found, in
References and notes
15. Representative procedure for 1-(6-bromohexyl)-3-(1,5-dimethyl-3-oxo-2-
phenyl-2,3-dihydro-1H-pyrazol-4-yl)spiro[indoline-3,2-thiazolidine]-2,4-dione
1. (a) Leclercq, R. Clin. Microbiol. Infect. 2009, 15, 224; (b) Zhang, W.; Locurcio, M.;
Lin, C. C.; Jimenez, L. S. J. Heter. Chem. 1996, 33, 1647; (c) Le Borgne, M.;
Marchand, P.; Duflos, M.; Delevoyl-Seiller, B.; Piessard-Robert, S.; Le Baut, G.;
Hartmann, R. W.; Palzer, M. Arch. Pharm. Med. Chem. 1997, 330, 141; (d) Scott,
R. R.; Williams, R. M. Chem. Rev. 1998, 98, 2723; (e) Varvarescu, A.; Tsantili-
Kakouliduo, A.; Siatrapapastaikoudi, T.; Tiligada, E. Arzneim.-Forsch./Drug Res.
2000, 50, 48.
2. (a) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209; (b) Tsuda, M.;
Mugishima, T.; Komatzu, K.; Sone, T.; Tanaka, M.; Mikaimi, Y.; Shiro, M.; Hirai,
M.; Ohizumii, Y.; Kobayashi, J. Tetrahedron 2003, 59, 3227; (c) Thericke, R.;
Tang, Y. Q.; Sattler, I.; Grabley, S.; Feng, X. Z. Eur. J. Org. Chem. 2001, 261; (d)
Jossang, A.; Jossang, P.; Hadi, H. A.; Sevenet, T.; Bodo, B. J. Org. Chem. 1991, 56,
6527; (e) Zaveri, N. T.; Jiang, F.; Olsen, C. M.; Deschamps, J. R.; Parrish, D.;
Polgar, W.; Toll, L. J. Med. Chem. 2004, 47, 2973.
3. (a) Huang, A.; Kodanko, J. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 14043;
(b) Bagul, T. D.; Lakshmaiah, G.; Kawabata, T.; Fuji, K. Org. Lett. 2002, 4, 249.
4. Ruck, R. T.; Huffman, M. A.; Kim, M. M.; Shevlin, M.; Kandur, W. V.; Davies, I. W.
Angew. Chem. Int. Ed. 2008, 47, 4711.
5. (a) Yong, S. R.; Williams, M. C.; Pyne, S. G.; Ung, A. T.; Skelton, B. W.; White, A.
H.; Turner, P. Tetrahedron 2005, 61, 8120; (b) Beccalli, E. M.; Clerici, F.; Gelmi,
M. L. Tetrahedron 2003, 59, 4615.
6. (a) Kawasaki, T.; Ogawa, A.; Terashima, R.; Saheki, T.; Ban, N.; Sekiguchi, H.;
Sakaguchi, K.; Sakamoto, M. J. Org. Chem. 2005, 70, 2957; (b) Mao, Z.; Baldwin,
S. W. Org. Lett. 2004, 6, 2425.
7. (a) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.;
Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc. 1994, 116, 9935; (b)
Edmondson, S.; Danishefsky, S. J.; Sepp-Lorenzino, L.; Rosen, N. J. Am. Chem. Soc.
1999, 121, 2147.
8. (a) Mhaske, P. C.; Shelke, S. H.; Jadhav, R. P.; Raundal, H. N.; Patil, S. V.; Patil, A.
A.; Bobade, V. D. J. Heterocycl. Chem. 2010, 47, 1415; (b) Dandia, A.; Singh, R.;
Khaturia, S.; Merienne, C.; Morgant, G.; Loupy, A. Bioorg. Med. Chem. 2006, 14,
2409; (c) Rajopadhye, M.; Popp, F. D. J. Heterocycl. Chem. 1987, 24, 1637; (d)
Rajopadhye, M.; Popp, F. D. J. Heterocycl. Chem. 1984, 21, 289.
9. (a) Abe Abe, Y.; Ebara, H.; Okada, S.; Akaki, R.; Horii, T.; Nakao, R. Dyes and
Pigments 2002, 52, 23; (b) Joshi, K. C.; Jain, R.; Sharma, K.; Bhattacharya, S. K.;
Goel, R. K. J. Indian Chem. Soc. 1988, 65, 202; (c) Joshi, K. C.; Jain, R.; Arora, S. J.
Indian Chem. Soc. 1988, 65, 277; (d) Nandakumar, A.; Thirumurugan, P.;
Perumal, P. T.; Vembu, P.; Ponnuswamy, M. N.; Ramesh, P. Bioorg. Med. Chem.
Lett. 2010, 20, 4252.
(7a):
A mixture of 1-(6-bromohexyl)-3-((1,5-dimethyl-3-oxo-2-phenyl-2,3-
dihydro-1H-pyrazol-4-yl)imino)indolin-2-one (5a; 6 mmol) and mercaptoacetic
acid (6) (6.5 mmol) was heated under reflux in dry toluene for 9 h, with
azeotropic removal of water simultaneously, using Dean Stark apparatus. The
reaction mixture turned light yellow in color and a sticky yellow solid was
formed. The toluene was distilled out and the oily mixture left was treated
with saturated solution of sodium bicarbonate to remove excess acid. The solid
obtained was stirred for an hour at room temperature and filtered, dried
and recrystallized from dichloromethane/methanol to obtain spiro[indol-
pyrazolin-thiazolidine]-2,4-dione (7a) as dirty white solid; IR
(KBr):
max
2932, 2857, 1720, 1701, 1684, 1611, 1489, 1467, 1359, 1285, and 1209 cmꢀ1
.
1H NMR (300 MHz, CDCl3): dH 7.36 (m, 2H), 7.27 (m, 3H), 7.18 (m, 3H), 6.74 (d,
J = 7.8 Hz, 1H), 4.49 & 4.33 (2d, J = 14.8 Hz, 1H each), 3.69 (t, J = 6.8 Hz, 2H),
3.39 (t, J = 6.9 Hz, 2H), 3.01 (s, 3H), 2.14 (s, 3H), 1.84 (m, 2H), 1.68 (m, 2H), 1.48
(m, 2H), 1.39 (m, 2H). 13C NMR (75.47 MHz, CDCl3): dC 177.4, 172.1, 162.2,
134.4–108.0 (aromatic carbons), 67.3, 40.1, 35.0, 33.4, 32.4, 27.6, 26.9, 26.3,
25.8, 10.7. EIMS m/z (%): 570 (M++2, 24), 568 (M+, 23), 506 (36), 489 (100), 433
(56), 341 (17), 260 (30), 245 (32), 203 (31), 190 (48). Anal. Calcd for
C
27H29BrN4O3S: C, 56.94; H, 5.13; N, 9.84. Found: C, 56.76; H, 5.19; N, 10.04.
This procedure for followed for all the substrates.
16. Representative procedure for 3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-
1H-pyrazo-4-yl)-1-(6-(2,3-dioxoindolin-1-yl)hexyl)spiro[indoline-3,2-thiazolidine]-
2,4-dione (8a): To a stirred solution of sodium hydride (1.08 mmol) in DMF
(10 mL) was added dropwise solution of 1H-indol-2,3-dione (1a; 0.9 mmol) in
DMF (10 mL) during 20 min at ꢀ10 °C under inert atmosphere of nitrogen. To
the deep purple colored suspension that resulted, spiro[indol-pyrazolin-
thiazolidine]-2,4-dione (7a; 0.9 mmol) was added dropwise at the same
temperature. The contents were allowed to stir at room temperature for
4–6 h and thereafter quenched with ice water to yield colored solids, which
were filtered and recrystallized from dichloromethane/methanol to give pure
monospiro bisindoles (8a) intermediate as deep orange needles; IR
(KBr):
2929, 2857, 1725, 1701, 1684, 1611, 1488, 1467, 1355, and 1164 cmꢀ1max
.
1H NMR
(300 MHz, CDCl3): dH 7.97 (m, 1H), 7.59 (m, 2H), 7.32 (m, 3H), 7.17–7.10 (m,
5H), 6.85 (m, 1H), 6.74 (d, J = 6.7 Hz, 1H), 4.38 and 4.28 (2d, J = 14.2 Hz, 1H
each), 3.62 (m, 4H), 2.95 (s, 3H), 2.12 (s, 3H), 1.68 (m, 4H), 1.42 (m, 4H). 13C
NMR (75.47 MHz, CDCl3): dC 180.1, 175.2, 172.3, 158.0, 154.2–108.0 (aromatic
carbons), 69.2, 39.8, 34.9, 32.8, 32.2, 29.5, 26.9, 26.3, 10.7. Anal. Calcd for
C
35H33N5O5S: C, 66.12; H, 5.23; N, 11.02. Found: C, 66.38; H, 5.62; N, 10.73.
10. (a) Thurston, D. E.; Bose, D. S.; Thompson, A. S.; Howard, P. W.; Leoni, A.;
Croker, S. J.; Jenkins, T. C.; Neidle, S.; Hartley, J. A.; Hurley, L. H. J. Org. Chem.
This procedure for followed for all the substrates.