Journal of the American Chemical Society
COMMUNICATION
or 13, respectively, as shown in Table 1. This can be attributed to
unfavorable steric interactions between a meta substituent and a
ligand on the nickel center, as in 35b and 36b (Scheme 4). In
sharp contrast, the substitution of a methoxy or dimethylamino
group at the meta position favors the cleavage of the hindered
CÀH bond to give 15 or 17, respectively. This reverse selectivity
can be rationalized by the coordination of an oxygen or nitrogen
atom to the nickel center. Thus, the coordination of a heteroatom
stabilizes the cyclometalated complex, as in 37b. In contrast to
the 3-methoxy substrate 14, in the reaction of the 3,4-dimethoxy
substrate 18, the less-hindered CÀH bond underwent cleavage,
probably because of the buttressing effect of the methoxy
group.12 A methoxy group at the 4-position pushes the other
methoxy group at the 3-position away toward the nickel center,
thus creating an unfavorable steric interaction, as in 38b.
(2) For recent selected papers on Ni-catalyzed transformations of
aromatic CÀH bonds, see: (a) Clement, N. D.; Cavell, K. J. Angew. Chem.,
Int. Ed. 2004, 43, 3845. (b) Keen, A. L.; Johnson, S. A. J. Am. Chem. Soc.
2006, 128, 1806. (c) Nakao, Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am.
Chem. Soc. 2006, 128, 8146. (d) Normand, A. T.; Hawkes, K. J.; Clement,
N. D.; Cavell, K. J.; Yates, B. F. Organometallics 2007, 26, 5352.
(e) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007,
46, 8872. (f) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008,
130, 2448. (g) Nakao, Y; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. J. Am.
Chem. Soc. 2008, 130, 16170. (h) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami,
K. Org. Lett. 2009, 11, 1733. (i) Hachiya, H.; Hirano, K.; Satoh, T.; Miura,
M. Org. Lett. 2009, 11, 1737. (j) Kobayashi, O.; Uraguchi, D.; Yamakawa,
T. Org. Lett. 2009, 11, 2679. (k) Mukai, T.; Hirano, K.; Satoh, T.; Miura,
M. J. Org. Chem. 2009, 74, 6410. (l) Matsuyama, N.; Hirano, K.; Satoh,
T.; Miura, M. Org. Lett. 2009, 11, 4156. (m) Kanyiva, K. S.; L€obermann,
F.; Nakao, Y.; Hiyama, T. Tetrahedron Lett. 2009, 50, 3463. (n) Tobisu,
M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070.
(o) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2009, 131, 15996. (p) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M.
Angew. Chem., Int. Ed. 2010, 49, 2202. (q) Matsuyama, N.; Kitahara, M.;
Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. (r) Vechorkin,
O.; Proust, V.; Hu, X. Angew. Chem., Int. Ed. 2010, 49, 3061. (s) Nakao,
Y.; Kashihara, N.; Kanyiva, K. S.; Hiyama, T. Angew. Chem., Int. Ed. 2010,
49, 4451. (t) Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.; Li, C.-Y.; Ong, T.-G.;
Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887. (u) Doster, M. E.;
Hatnean, J. A.; Jeftic, T.; Modi, S; Johnson, S. A. J. Am. Chem. Soc. 2010,
132, 11923. (v) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am.
Chem. Soc. 2010, 132, 13666. (w) Hachiya, H.; Hirano, K.; Satoh, T.;
Miura, M. ChemCatChem 2010, 2, 1403. (x) Yao, T.; Hirano, K.; Satoh,
T.; Miura, M. Chem.—Eur. J. 2010, 16, 12307. (y) Shacklady-McAtee,
D. M.; Dasgupta, S.; Watson, M. P. Org. Lett. 2011, 13, 3490.
(3) Although the reaction is limited to indoles, it was reported that
CÀH bonds β to a cyano and ester underwent the addition to alkynes.
However, the authors did not describe the possibility of chelation
assistance. See refs 2c and 2s.
The directing group, a 2-pyridinylmethylamine, can be easily
removed by treatment of 22 with lithium diisopropylamide
(LDA) and then bubbling O2 followed by hydrolysis to give
NH-isoquinolone 39 in good yield (Scheme 5).
In summary, we have reported the development of a new
catalytic system that takes advantage of chelation assistance
by a 2-pyridinylmethylamine moiety.5,13 As a result, the first
example of the Ni-catalyzed transformation of ortho CÀH bonds
utilizing chelation assistance has been achieved. Although the
pioneering example of ortho metalation involving cleavage of
CÀH bonds was achieved using a nickel complex,4 no examples
of catalysis using nickel complexes have been reported even more
than 45 years after the pioneering work appeared in the literature.
Although similar types of transformations using a [Cp*RhCl]2
or [RuCl2(p-cymene)]2 complex as the catalyst have been re-
ported,10,11 it is significant that even less expensive nickel com-
plexes can be used as catalysts for the reaction. To examine the
potential of the newly designed directing group for exploring new
reactions that have not been achieved using a conventional
chelation-assisted system, we are currently testing the system
for its potential for use in a variety of catalytic reactions.
(4) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
(5) (a) Inoue, S.; Shiota, H.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2009, 131, 6898. (b) Hasegawa, N.; Charra, V.; Inoue, S.;
Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 8070.
(6) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008,
130, 6058.
’ ASSOCIATED CONTENT
(7) Miura, T.; Yamauchi, M.; Murakami, M. Org. Lett. 2008, 10, 3085.
(8) Liu, C.-C.; Parthasarathy, K.; Cheng, C.-H. Org. Lett. 2010, 12, 3518.
(9) For a related cyclometalation via activation of a C(sp2)ÀH bond to
form a five-membered nickelacycle, see: Carmona, E.; Palma, P.; Paneque,
M.; Poveda, M. L. J. Am. Chem. Soc. 1986, 108, 6424. Also see: Nakao, Y.;
Morita, E.; Idei, H.; Hiyama, T. J. Am. Chem. Soc. 2011, 133, 3264.
(10) (a) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Lett. 2010, 39, 744. (b) Guimond, N.; Gouliaras, C.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 6908. (c) Hyster, T.; Rovis, T. J. Am. Chem.
Soc. 2010, 132, 10565. (d) Song, G.; Chen, D.; Pan, C.-L.; Crabtree,
R. H.; Li, X. J. Org. Chem. 2010, 75, 7487. (e) Guimond, N.; Gorelsky,
S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449. (f) Hyster, T. K.;
Rovis, T. Chem. Sci. 2011, 2, 1606.
S
Supporting Information. Experimental procedures and
b
characterization data for all new compounds. This material is
’ AUTHOR INFORMATION
Corresponding Author
chatani@chem.eng.osaka-u.ac,jp
’ ACKNOWLEDGMENT
(11) (a) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem.,
Int. Ed. 2011, 50, 6379. (b) Ackermann, L.; Lygin, A. V.; Hofmann, N.
Org. Lett. 2011, 13, 3278.
This work was supported in part by a Grant-in-Aid for
Scientific Research on Innovative Areas “Molecular Activation
Directed toward Straightforward Synthesis” from The Ministry
of Education, Culture, Sports, Science and Technology, Japan.
(12) For a review of the buttressing effect, see: Westheimer, F. H. In
Steric Effects in Organic Chemistry; Newman, M. S., Ed.; Wiley: New York,
1956; Chapter 12, p 552. Also see: Gorecka, J.; Heiss, C.; Scopelliti, R.;
Schlosser, M. Org. Lett. 2004, 6, 4591 and references cited therein.
(13) For papers on catalytic transformations using bidentate direct-
ing groups, see: Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem.
Soc. 2005, 127, 13154. Giri, R.; Maugel, N.; Foxman, B. M.; Yu, J.-Q.
Organometallics 2008, 27, 1667. Shabashov, D.; Daugulis, O. J. Am.
Chem. Soc. 2010, 132, 3965. Ano, Y.; Tobisu, M.; Chatani, N. J. Am.
Chem. Soc. 2011, 133, 12984.
’ REFERENCES
(1) For recent reviews of CÀH bond functionalization, see: Kakiuchi,
F.; Kochi, T. Synthesis 2008, 3013. Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624. Sehnal, P.; Taylor, R. J. K.; Fairlamb,
I. J. S. Chem. Rev. 2010, 110, 824. Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147. Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev.
2010, 39, 712. Ackermann, L. Chem. Commun. 2010, 46, 4866.
14955
dx.doi.org/10.1021/ja206850s |J. Am. Chem. Soc. 2011, 133, 14952–14955