Journal of the American Chemical Society
COMMUNICATION
’ ASSOCIATED CONTENT
LeMahieu, R. A.; Carson, M.; Kierstead, R. W.; Fern, L. M.; Grunberg, E.
J. Med. Chem. 1974, 17, 953.
(7) Velvadapu, V.; Paul, T.; Wagh, B.; Klepacki, D.; Guvench, O.;
MacKerell, A.; Andrade, R. B. ACS Med. Chem. Lett. 2011, 2, 68.
Also see:Gerber-Lemaire, S.; Ainge, S. W.; Glanzmann, C.; Vogel, P.
Helv. Chem. Acta 1998, 81, 1439.
S
Supporting Information. Synthetic methods, detailed
b
spectroscopic characterization data (HMBC, NOESY, etc.),
crystallographic data (CIF), and complete refs 6iÀ6k. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(8) Ghosh, P.; Zhang, Y.; Emge, T. J.; Williams, L. J. Org. Lett. 2009,
11, 4402.
(9) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
103, 2127.
’ AUTHOR INFORMATION
(10) Mead, K. T. Tetrahedron. Lett. 1987, 28, 1019.
(11) Shimizu, M.; Kawamoto, M.; Niwa, Y. Chem. Commun. 1999,
1151.
Corresponding Author
(12) Sharma, R.; Manpadi, M.; Zhang, Y.; Kim, H.; Akhmedov,
N. G.; Williams, L. J. Org. Lett. 2011, 13, 3352.
(13) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M.
’ ACKNOWLEDGMENT
Bull. Chem. Soc. Jpn. 1979, 52, 1989.
This paper is dedicated to Professor Samuel J. Danishefsky for
his continuing accomplishments in synthesis. Financial support
from the NIH (GM078145) is gratefully acknowledged.
(14) See ref 6g for a closely related substrate and transformation.
(15) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc.
1988, 110, 3560.
(16) (a) Kim, H.; Williams, L. J. Curr. Opin. Drug Discovery Dev.
2008, 11, 870. (b) Horvꢁath, A.; B€ackvall, J.-E. In Modern Allene
Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; Vol. 2, pp 973À994. (c) Rameshkumar, C.; Xiong, H.;
Tracey, M. R.; Berry, C. R.; Yao, L. J.; Hsung, R. P. J. Org. Chem. 2002,
67, 1339. (d) Crandall, J. K.; Batal, D. J.; Lin, F.; Reix, T.; Nadol, G. S.;
Ng, R. A. Tetrahedron 1992, 48, 1427.
(17) (a) Joyasawal, S.; Lotesta, S. D.; Akhmedov, N. G.; Williams,
L. J. Org. Lett. 2010, 12, 988. (b) Ghosh, P.; Cusick, J. R.; Inghrim, J.;
Williams, L. J. Org. Lett. 2009, 11, 4672. (c) Zhang, Y.; Cusick, J. R.;
Ghosh, P.; Shangguan, N.; Katukojvala, S.; Inghrim, J.; Emge, T. J.;
Williams, L. J. J. Org. Chem. 2009, 74, 7707. (d) Wang, Z.; Shangguan,
N.; Cusick, J. R.; Williams, L. J. Synlett 2008, 213. (e) Lotesta, S. D.;
Kiren, S.; Sauers, R. R.; Williams, L. J. Angew. Chem., Int. Ed. 2007, 46,
7108. (f) Ghosh, P.; Lotesta, S. D.; Williams, L. J. J. Am. Chem. Soc. 2007,
129, 2438. (g) Lotesta, S. D.; Hou, Y.; Williams, L. J. Org. Lett. 2007,
9, 869. (h) Katukojvala, S.; Barlett, K. N.; Lotesta, S. D.; Williams, L. J.
J. Am. Chem. Soc. 2004, 126, 15348.
’ REFERENCES
(1) (a) Lonks, J. R.; Goldmann, D. A. Clin. Infect. Dis. 2005, 40, 1657.
(b) Omura, S. Macrolide Antibiotics: Chemistry, Biology, and Practice, 2nd
ed.; Elsevier: San Diego, CA, 2002. (c) Wu, Y.; Su, W. Curr. Med. Chem.
2001, 8, 1727. (d) Zhanel, G. G.; Dueck, M.; Hoban, D. J.; Vercaigne,
L. M.; Embil, J. M.; Gin, A. S.; Karlowsky, J. A. Drugs 2001, 61, 443.
(e) Wu, Y. Curr. Pharm. Des. 2000, 6, 181.
(2) (a) Bulkley, D.; Innis, C. A.; Blaha, G.; Steitz, T. A. Proc. Natl.
Acad. Sci. U.S.A. 2010, 107, 17158. (b) Dunkle, J. A.; Xiong, L.; Mankin,
A. S.; Cate, J. H. D. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 17152. (c) Tu,
D.; Blaha, G.; Moore, P. B.; Steitz, T. A. Cell 2005, 121, 257. (d)
Schlunzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht,
R.; Yonath, A.; Franceschl, F. Nature 2001, 413, 814. (e) Nissen, P.;
Hansen, J.; Ban, N.; Moore, P. B.; Steitz, T. A. Science 2000, 289, 920.
(f) Yonath, A.; Leonard, K.; Wittmann, H. Science 1987, 236, 813.
(3) Shinkai, M.; Henke, M. O.; Rubin, B. K. Pharmacol. Ther. 2008,
117, 393.
(18) (a) Ma, S. In Modern Allene Chemistry; Krause, N., Hashmi, A. S.
K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, pp595À700. (b)
Waters, W. L.; Linn, W. S.; Caserio, M. C. J. Am. Chem. Soc. 1968, 90, 6741.
(19) Still, W. C.; Galynker, I. Tetrahedron 1981, 37, 3981.
(20) Cakmak, M.; Mayer, P.; Trauner, D. Nat. Chem. 2011, 3, 543.
(21) For early studies of related cyclic allenes, see: Nicolaou, K. C.;
Garratt, P. J.; Sondheimer, F. J. Am. Chem. Soc. 1973, 95, 4582.
(22) (a) Fleming, S. A.; Liu, R.; Redd, J. T. Tetradedron Lett. 2005,
46, 8095. (b) Fleming, S. A.; Carroll, S. M.; Hirschi, J.; Liu, R.; Pace, J. L.;
Redd, J. T. Tetrahedron Lett. 2004, 45, 3341. (c) Mereyala, H. B.;
Gurrala, S. R.; Mohan, S. K. Tetrahedron 1999, 55, 11331. (d) Manabe, S.
Chem. Commun. 1997, 737. (e) David, K.; Ariente, C.; Greiner, A.; Gore,
J.; Cazes, B. Tetrahedron Lett. 1996, 37, 3335. (f) Wolff, S.; Agosta, W. C.
Can. J. Chem. 1984, 62, 2429. (g) Biollaz, M.; Haefliger, W.; Velarde, E.;
Crabbe, P.; Fried, J. H. J. Chem. Soc., Chem. Commun. 1971, 1322.
(23) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483.
(24) Azam, K. A.; Deeming, A. J. J. Chem. Soc., Dalton Trans. 1981, 91.
(25) The scope of allene osmylation and conformational, computa-
tional, and additional synthetic details will be disclosed separately.
(26) (a) Drahl, M. A.; Akhmedov, N. G.; Williams, L. J. Tetrahedron
Lett. 2011, 52, 325. (b) Xu, D.; Drahl, M. A.; Williams, L. J. Beilstein J.
Org. Chem. 2011, 7, 937. Compare with: (c) Jones, S. B.; Simmons, B.;
Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183. (d)
Wilson, R. M.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2010, 49, 6032.
(e) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed.
2009, 48, 2854. (f) Schreiber, S. L. Nature 2009, 457, 153. (g)
Hendrickson, J. B. J. Am. Chem. Soc. 1971, 93, 6847.
(4) (a) Khosla, C.; Tang, Y.; Chen, A. Y.; Schnarr, N. A.; Cane, D. E.
Annu. Rev. Biochem. 2007, 76, 195. (b) Katz, L. Chem. Rev. 1997,
97, 2557. (c) Khosla, C. Chem. Rev. 1997, 97, 2577. (d) Hutchinson,
C. R.; Fujii, I. Annu. Rev. Microbiol. 1995, 49, 201.
(5) (a) Lewis, C. A.; Miller, S. J. Angew. Chem., Int. Ed. 2006,
45, 5616. (b) Agouridas, C.; Denis, A.; Auger, J.; Benedetti, Y.;
Bonnefoy, A.; Bretin, F.; Chantot, F.; Dussarat, A.; Fromentin, C.;
D’Ambriꢀeres, S. G.; Lachaud, S.; Laurin, P.; Martret, O. L.; Loyau, V.;
Tessot, N. J. Med. Chem. 1998, 41, 4080. (c) Gasc, J. C.; d’Ambriꢀeres,
S. G.; Lutz, A.; Chantot, J. F. J. Antibiot. 1991, 44, 313. (d) Retsema, J. A.;
Girard, A. E.; Schekly, W.; Manousos, M.; Anderson, M. R.; Bright,
G. M.; Borovoy, R. J.; Brennan, L. A.; Mason, R. Antimicrob. Agents
Chemother. 1987, 31, 1939. (e) Omura, S.; Tsuzuki, K.; Sunazuka, T.;
Marui, S.; Toyoda, H.; Inatomi, N.; Itoh, Z. J. Med. Chem. 1987, 30, 1941.
(f) Chantot, J.-F.; Bryskier, A.; Gasc, J.-C. J. Antibiot. 1986, 39, 660. (g)
Morimoto, S.; Takahashi, Y.; Watanabe, Y.; Omura, S. J. Antibiot. 1984,
37, 187. (h) Allen, N. Antimicrob. Agents Chemother. 1977, 11, 669.
(i) Mao, J. C.-H.; Putterman, M. J. Mol. Biol. 1969, 44, 347.
(6) (a) Muri, D.; Carreira, E. M. J. Org. Chem. 2009, 74, 8695. (b)
Muri, D.; Lohse-Fraefel, N.; Carriera, E. M. Angew. Chem., Int. Ed. 2005,
44, 4036. (c) Peng, Z.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 6018.
(d) Toshima, K.; Nozaki, Y.; Mukaiyama, S.; Tamai, T.; Nakata, M.;
Tatsuta, K.; Kinoshita, M. J. Am. Chem. Soc. 1995, 117, 3717. (e) Stuermer,
R.;Ritter, K.;Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1993, 32, 105. (f)
Tone, H.; Nishi, T.; Oikawa, Y.; Hikota, M.; Yonemitsu, O. Chem. Pharm.
Bull. 1989, 37, 1167. (g) Paterson, I.; Rawson, D. J. Tetrahedron. Lett. 1989,
30, 7463. (h) Stork, G.; Rychnovsky, S. D. J. Am. Chem. Soc. 1987, 109, 1565.
(i) Woodward, R. B.; et al. J. Am. Chem. Soc. 1981, 103, 3210. (j)
Woodward, R. B.; et al. J. Am. Chem. Soc. 1981, 103, 3213. (k) Woodward,
R. B.; et al. J. Am. Chem. Soc. 1981, 103, 3215. Degradation: (l)
14971
dx.doi.org/10.1021/ja207496p |J. Am. Chem. Soc. 2011, 133, 14968–14971