ORGANIC
LETTERS
2011
Vol. 13, No. 19
5394–5397
Copper-Catalyzed Coupling of Oxime
Acetates with Aldehydes: A New Strategy
for Synthesis of Pyridines
Zhi-Hui Ren, Zhi-Yuan Zhang, Bing-Qin Yang, Yao-Yu Wang, and Zheng-Hui Guan*
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of
Education, Department of Chemistry & Materials Science, Northwest University, Xi’an
710069, P. R. China
Received August 24, 2011
ABSTRACT
Copper-catalyzed coupling of oxime acetates with aldehydes offers a new strategy for the synthesis of highly substituted pyridines. This novel
method tolerates a wide range of functionality and allows for rapid elaboration of the oxime acetates into a variety of substituted pyridines.
Oximes and their derivatives are valuable synthetic
building blocks.1 They are well-known fruitful candidates
for the Beckmann rearrangement reactions to prepare
amides2 or for the dehydration reactions to produce
nitriles.3 Recently, transition metal catalyzed coupling
reactions using oximes and their derivatives as substrates
have emerged. Coupling of oximes with aryl halides or
arylboronic acids have been used for construction of the
synthetic useful O-arylhydroxylamines.4 Alternatively,
attractive elegant strategies for the coupling of oxime
carboxylates with boronic acids (eq 1),5 arynes (eq 2),6 or
aromatic CꢀH bonds (eq 3)7 were recently explored for
efficient construction of a series of aza-heterocycles
(Scheme 1). Cleavage of the NꢀO bond in oxime carbox-
ylates by a low valent transition metal, such as Pd(0) and
Cu(I), shows a new promising approach to nitrogen-con-
taining compounds. Despite these advances, the develop-
ment of new methodologies for transition metal catalyzed
coupling of the electrophilic oxime carboxylates with
alternative electrophiles remains largely unrealized. The
challenges of the reactions include the following: (1)
cleavage of the NꢀO bond in oxime carboxylates involves
two pathways: oxidative addition and radical process; (2)
coupling of two electrophiles is subject to an efficient
reducing agent in the reaction system.
(1) (a) Sukhorukov, A. Y.; Ioffe, S. L. Chem. Rev. 2011, 111, 5004. (b)
ꢀ
Alonso, D. A.; Najera, C. Chem. Soc. Rev. 2010, 39, 2891. (c) Himo, F.;
Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless,
K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210. (d) Narasaka, K.;
Kitamura, M. Eur. J. Org. Chem. 2005, 4505. (e) Narasaka, K. Pure
Appl. Chem. 2002, 74, 143.
ꢀ
ꢀ
(2) (a) Ramon, R. S.; Bosson, J.; Dıez-Gonzalez, S.; Marion, N.;
Nolan, S. P. J. Org. Chem. 2010, 75, 1197. (b) Ganguly, N. C.; Mondal,
P. Synthesis 2010, 3705. (c) Ramalingan, C.; Park, Y.-T. J. Org. Chem.
2007, 72, 4536. (d) Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y.
J. Org. Chem. 2008, 73, 2894.
Substituted pyridines are one of the most prevalent
heterocycles in many natural products, pharmaceuticals,
(3) (a) Augustine, J. K.; Atta, R. N.; Ramappa, B. K.; Boodappa, C.
Synlett 2009, 3378. (b) Zhu, J.-L.; Lee, F.-Y.; Wu, J.-D.; Kuo, C.-W.;
Shia, K.-S. Synlett 2007, 1317. (c) Choi, E.; Lee, C.; Na, Y.; Chang, S.
Org. Lett. 2002, 4, 2369. (d) De Luca, L.; Giacomelli, G.; Porcheddu, A.
J. Org. Chem. 2002, 67, 6272.
(4) (a) Maimone, T. J.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,
9990. (b) Prithwiraj, D.; Nonappa; Pandurangan, K.; Maitra, U.;
Wailes, S. Org. Lett. 2007, 9, 2767.
(6) (a) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2009,
48, 572. (b) Too, P. C.; Wang, Y.-F.; Chiba, S. Org. Lett. 2010, 12, 5688.
(c) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2008,
10, 325. (d) Zaman, S.; Mitsuru, K.; Ab, A. D. Org. Lett. 2005, 7, 609.
(7) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
(8) (a) Wang, W.; Li, J.; Wang, K.; Smirnova, T. I.; Oldfield, E.
J. Am. Chem. Soc. 2011, 133, 6525. (b) Henry, G. D. Tetrahedron 2004,
60, 6043. (d) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627. (c) Carey, J. S.;
Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol. Chem. 2006, 4,
2337.
(5) (a) Liu, S.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918.
(b) Liu, S.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947. (c) Zhang,
Z.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2008, 10, 3005.
r
10.1021/ol202290y
Published on Web 09/13/2011
2011 American Chemical Society