Notes and references
1 D. C. Gutsche, in Calixarenes: An introduction, ed. J. F. Stoddart,
Royal Society of Chemistry, Cambridge, UK, 2008, p. 209–237.
2 (a) S.-Y. Li, Y.-W. Xu, J.-M. Liu and C.-Y. Su, Int. J. Mol. Sci.,
2011, 12, 429 and references cited therein; (b) S. A. Herbert and
G. E. Arnott, Org. Lett., 2009, 11, 4986; (c) Z.-X. Xu, C. Zhang,
Y. Yang, C.-F. Chen and Z.-T. Huang, Org. Lett., 2008, 10, 477;
(d) V. I. Boyko, A. Shivanyuk, V. V. Pyrozhenko, R. I. Zubatyuk,
O. V. Shishkin and V. I. Kalchenko, Tetrahedron Lett., 2006,
47, 7775.
3 (a) K. Ishibashi, H. Tsue, H. Takahashi and R. Tamura, Tetrahedron:
Asymmetry, 2009, 20, 375; (b) K. Kogran, I. Colombus and S. E. Biali,
J. Org. Chem., 2008, 73, 7327; (c) O. Kundrat, J. Kroupa, S. Bohm,
J. Budka, V. Eigner and P. Lhotak, J. Org. Chem., 2010, 75, 8372;
(d) F. Narumi, N. Matsurama, N. Sasagawa, K. Natori, T. Kajiwara
and T. Hattori, Tetrahedron: Asymmetry, 2008, 19, 1470;
(e) B.-Y. Hou, Q.-Y. Zheng, D.-X. Wang and M.-X. Wang, Tetra-
hedron, 2007, 63, 10801; (f) W. van Rossom, L. Khisore, K. Robeyns,
L. van Meervelt, W. Dehaen and W. Maes, Eur. J. Org. Chem., 2010,
4122; (g) S. Ferrini, S. Fusi, G. Giorgi and F. Ponticelli, Eur. J. Org.
Chem., 2008, 5407; (h) J. L. Katz and B. A. Tschaen, Org. Lett., 2010,
12, 4300.
Fig. 2 Crystal structure of the racemate 9 and ORTEP diagram of
one of the enantiomers (red: O; blue: N; green: S; black: C; orange: H).
Macrocycles 8–10 are obtained in a racemic form due to the
enantiomerization process which occurs at room temperature.
The high conformation mobility of the above heterocalixarenes
is most likely due to the lack of steric hindrance and OH groups
(H-bonds); both are key factors to stabilize the conformation in
classical calixarenes. In addition, the sp2 character of the
bridges seems to be not sufficient to prevent the inversion of
the aromatic rings. The X-ray analyses of 8 and 9 clearly
established an aggregate of the two enantiomers leading to a
heterochiral racemic crystal (1 : 1 ratio) in which the enantiomers
pack in a dense, ordered array. In both cases, compounds 9 and
8 were arranged in a herringbone packing with strong p–p
stacking (3.438 o d(CÁÁ ÁC) o 3.890 A) (Fig. 1 and 2). In the
lattice packing, the racemate consists of alternating layers of
each enantiomer. Within each layer, all molecules have the
same orientation with respect to the crystal axes (i.e. there are
only two orientations with which a molecule might add to the
lattice during crystallisation) (see ESIw, Fig. S1). In addition,
4 (a) V. Bohmer, D. Kraft and M. Tabatabai, J. Inclusion
¨
Phenom. Mol. Recognit. Chem., 1994, 19, 17; (b) A. Dalla Cort,
L. Mandolini, C. Pasquini and L. Schiaffino, New J. Chem., 2004,
28, 1198.
5 (a) B. Konig and M. H. Fonseca, Eur. J. Inorg. Chem., 2000, 2303;
¨
ed. Z. Asfari, V. Bohmer, J. Harrowfield and J. Vicens, Kluwer
¨
(b) M. Vysotsky, M. Saadioui and V. Bohmer, in Calixarenes 2001,
¨
Academic Publishers, Dordrecht, 2001, ch. 13, p. 250; (c) P. Lhotak,
´
Eur. J. Org. Chem., 2004, 1675; (d) N. Morohashi, F. Narumi,
N. Iki, T. Hattori and S. Miyano, Chem. Rev., 2006,
106, 5291; (e) W. Maes and W. Dehaen, Chem. Soc. Rev.,
2008, 37, 2393; (f) M.-X. Wang, Chem. Commun., 2008, 4541;
(g) H. Tsue, K. Ishibashi and R. Tamura, Top. Heterocycl. Chem.,
2008, 17, 73.
6 (a) J. Clayden, S. J. M. Rowbottom, W. J. Ebenezer and
M. G. Hutchings, Org. Biomol. Chem., 2010, 7, 4871;
(b) M. Touil, J.-M. Raimundo, P. Marsal, M. Lachkar and
O. Siri, Tetrahedron, 2010, 66, 4377; (c) L.-X. Wang, D.-X. Wang,
Z.-T. Huang and M.-X. Wang, J. Org. Chem., 2010, 75, 741;
(d) R. Haddoub, M. Touil, J.-M. Raimundo and O. Siri, Org. Lett.,
2010, 12, 2722; (e) J. Clayden, S. J. M. Rowbottom,
M. G. Hutchings and W. J. Ebenezer, Tetrahedron Lett.,
2009, 50, 3923; (f) H. Konishi, S. Hashimoto, T. Sakakibara,
S. Matsubara, Y. Yasukawa, O. Morikawa and K. Kobayashi,
Tetrahedron Lett., 2009, 50, 620; (g) M. Xue and C.-F. Chen,
Org. Lett., 2009, 11, 5294; (h) M. Touil, M. Lachkar and
O. Siri, Tetrahedron Lett., 2008, 49, 7250; (i) M. Touil,
M. Elahabiri, M. Lachkar and O. Siri, Eur. J. Org. Chem., 2011,
1914.
7 (a) A. Ito, Y. Ono and K. Tanaka, New J. Chem., 1998, 22, 779;
(b) M.-X. Wang, X.-H. Zhang and Q.-Y. Zheng, Angew. Chem., Int.
Ed., 2004, 43, 838; (c) H. Tsue, K. Ishibashi, H. Takahashi and
R. Tamura, Org. Lett., 2005, 7, 2165; (d) Y. Suzuki, T. Yanagi,
T. Kanbara and T. Yamamoto, Synlett, 2005, 263; (e) E.-X. Zhang,
D.-X. Wang, Q.-Y. Zheng and M.-X. Wang, Org. Lett., 2008,
10, 2565; (f) H. Tsue, K. Mastsui, K. Ishibashi, H. Takahashi,
S. Tokita, K. Ono and R. Tamura, J. Org. Chem., 2008, 73, 7748;
(g) M. Vale, M. Pink, S. Rajca and A. Rajca, J. Org. Chem., 2008,
31, 27; (h) K. V. Lawson, A. C. Barton and J. D. Spence, Org. Lett.,
2009, 11, 895; (i) A. Ito, H. Ino and K. Tanaka, Polyhedron, 2009,
28, 2080.
building block
9
forms 3D-supramolecular channels—
assembled through C–HÁÁÁO and C–HÁÁÁN and interactions—
that might be used for complexation of guests (see ESIw, Fig. S2).
In conclusion, a stepwise fragment coupling strategy has
allowed the access to the first mixed N/S heterocalix[4]arenes.
The synthetic pathway turned out to be crucial to generate
inherent chiral properties originating from the bridge by a
ready control of the N/S ratio and/or the heteroatom position.
Although, inherently chiral derivatives have been obtained in
their racemic form, derivatizations of the starting materials
should allow the synthesis of resolvable enantiomers (for
instance by introduction on the phenyl rings of steric hindered
and/or hydrogen bonding substituents). Additionally, this new
class of calixarenes (8–10) offers the possible concomitant
properties of the thiacalixarenes 15d (regio, stereo or chemoselective
oxidation of the sulfur bridge) and the aza5f–g,6 analogues 2 (as host
and/or robust high spin stable polyradicals), that should open new
perspectives in calixarene chemistry owing to the presence of hard
and soft heteroatoms around the same cavity.
8 (a) J.-M. Raimundo, P. Blanchard, P. Frere, N. Mercier,
I. Ledoux-Rak, R. Hierle and J. Roncali, Tetrahedron Lett.,
2001, 42, 1507; (b) J. Poater, J. Casanovas, M. Sola and
C. Aleman, J. Phys. Chem. A, 2010, 114, 1023and references cited
therein.
This work was supported by the Centre National de la
Recherche Scientifique and the Ministere de l’Enseignement
Superieur et de la Recherche. We also thank M. Giorgi (Spectro-
´
9 Y. Yasukawa, K. Kobayashi and H. Konishi, Tetrahedron Lett.,
2009, 50, 5130.
pole, Marseille) for the crystal structure determinations.
c
10412 Chem. Commun., 2011, 47, 10410–10412
This journal is The Royal Society of Chemistry 2011