To the best of our knowledge, this is the first example of a split
and mix combinatorial synthesis of a nucleic acid encoded glycan
library. The ability to pair such encoded glycan library in a
combinatorial fashion onto DNA provides a rapid means to
generate a large diversity of assemblies to probe and decode
binding leveraged on multimeric interactions. While the present
pilot library focused specifically on mannose, and only explored
limited modifications, the results do suggest that a substitution
with an aryl group at the 6-position of the terminal mannose is
beneficial for DC-SIGN binding. In the larger context, the results
also suggest that this approach should be broadly applicable to
different glycoconjugates including mammalian oligosaccharides
and microbial peptidoglycans.
This work was supported by a grant from the European
Research Council (ERC 201749). The Institut Univervsitaire
de France (IUF) is gratefully acknowledged for its support.
Notes and references
1 P. H. Seeberger and D. B. Werz, Nat. Rev. Drug Discovery, 2005,
4, 751; R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi,
K. Sekanina, N. Horan, J. Gildersleeve, C. Thompson, A. Smith,
K. Biswas, W. C. Still and D. Kahne, Science, 1996, 274, 1520.
2 P. H. Seeberger and D. B. Werz, Nature, 2007, 446, 1046;
J. C. Paulson, O. Blixt and B. E. Collins, Nat. Chem. Biol., 2006,
2, 238; O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt,
R. Alvarez, M. C. Bryan, F. Fazio, D. Calarese, J. Stevens,
N. Razi, D. J. Stevens, J. J. Skehel, I. van Die, D. R. Burton,
I. A. Wilson, R. Cummings, N. Bovin, C. H. Wong and
J. C. Paulson, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 17033.
3 M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier,
D. A. Driver, R. H. Berg, S. K. Kim, B. Norden and P. E. Nielsen,
Nature, 1993, 365, 566.
4 J. L. Harris and N. Winssinger, Chem.–Eur. J., 2005, 11, 6792.
5 L. Wu and V. N. Kewal Ramani, Nat. Rev. Immunol., 2006, 6, 859.
6 A. Imberty, Y. M. Chabre and R. Roy, Chem.–Eur. J., 2008, 14, 7490.
7 S. Pohlmann, J. Zhang, F. Baribaud, Z. W. Chen, G. Leslie, G. Lin,
A. Granelli-Piperno, R. W. Dom, C. M. Rice and J. A. McSKeating,
J. Virol., 2003, 77, 4070; L. Tailleux, O. Schwartz, J. L. Herrmann,
E. Pivert, M. Jackson, A. Amara, L. Legres, D. Dreher, L. P. Nicod,
J. C. Gluckman, P. H. Lagrange, B. Gicquel and O. Neyrolles, J. Exp.
Med., 2003, 197, 121.
Fig. 3 Affinity of three assemblies for DC-SIGN measured by SPR.
Top: calculated KD of three assemblies in two buffers (the letters
denote the fragments, see Fig. 1 for the structure); Middle: structure of
assembly 4 identified in the screen, sensogram of assembly 4 at 25,
12.5, 6.25 and 3.12 mM (entry 1).
(Fig. 3, entries 1, 3, 5 vs 2, 4, 6). Gratifyingly, assembly 4 had over
30 fold improved affinity relatively to the positive control
(assembly 5) concurring the microarray and sequencing data. To
validate whether the selected modified glycan would antagonize the
interaction of gp120 with dendritic cells, the selected fragments were
resynthesized without the PNA and coupled to a 5th generation
PAMAM dendrimer (8, Fig. 4, see ESIz for experimental details).
Mass spectroscopic analysis of the product suggested that each
dendron statistically contained 6 units of each glycan. The dendron
8 was found to inhibit the interaction of gp120 with dendritic cells in
a dose dependent manner. As shown in Fig. 5, dendron 8
completely inhibited the interaction of gp120 with dendritic cells
at 10 mM whereas a natural polymer of mannose (mannan) only
partially inhibited this interaction at 100 mg mLꢁ1 (500 mM in
mannose).
8 T. B. H. Geijtenbeek, D. S. Kwon, R. Torensma, S. J. van Vliet, G. C.
F. van Duijnhoven, J. Middel, I. Cornelissen, H. Nottet,
V. N. KewalRamani, D. R. Littman, C. G. Figdor and Y. van Kooyk,
Cell (Cambridge, Mass.), 2000, 100, 587; H. Feinberg, D. A. Mitchell,
K. Drickamer and W. I. Weis, Science, 2001, 294, 2163; D. A. Mitchell,
A. J. Fadden and K. Drickamer, J. Biol. Chem., 2001, 276, 28939.
9 K. J. Doores, C. Bonomelli, D. J. Harvey, S. Vasiljevic,
R. A. Dwek, D. R. Burton, M. Crispin and C. N. Scanlan, Proc.
Natl. Acad. Sci. U. S. A., 2010, 107, 13800.
10 C. N. Scanlan, J. Offer, N. Zitzmann and R. A. Dwek, Nature,
2007, 446, 1038.
11 G. Tabarani, J. J. Reina, C. Ebel, C. Vives, H. Lortat-Jacob, J. Rojo and
F. Fieschi, FEBS Lett., 2006, 580, 2402; M. Sanchez-Navarro and
J. Rojo, Drug News Perspect., 2010, 23, 557; S. Sattin, A. Daghetti,
M. Thepaut, A. Berzi, M. Sanchez-Navarro, G. Tabarani, J. Rojo,
F. Fieschi, M. Clerici and A. Bernardi, ACS Chem. Biol., 2010, 5, 301;
S. K. Wang, P. H. Liang, R. D. Astronomo, T. L. Hsu, S. L. Hsieh,
D. R. Burton and C. H. Wong, Proc. Natl. Acad. Sci. U. S. A., 2008,
105, 3690; C. R. Becer, M. I. Gibson, J. Geng, R. Ilyas, R. Wallis,
D. A. Mitchell and D. M. Haddleton, J. Am. Chem. Soc., 2010,
132, 15130.
Fig. 4 Synthesis of a glycodendrimer 8 derivatized with glycan frag-
ments of assembly 4.
12 R. Roy, Curr. Top. Struct. Biol., 1996, 6, 692; Y. M. Chabre and
R. Roy, Curr. Top. Med. Chem., 2008, 8, 1237.
13 K. Gorska, K. T. Huang, O. Chaloin and N. Winssinger, Angew.
Chem., Int. Ed., 2009, 48, 7695.
14 M. Meldal and C. W. Tornoe, Chem. Rev., 2008, 108, 2952;
H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8, 1128.
15 J. P. Daguer, M. Ciobanu, S. Alvarez, S. Barluenga and
N. Winssinger, Chem. Sci., 2011, 2, 625.
Fig. 5 Inhibition of gp120 binding to dendritic cells (DC cells).
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9321–9323 9323