1005, 940, 815, 720, 680 cm-1; MS (PI-FDMS): m/z (%) = 1117.1
(40) [2M+-Br], 598.4 (100) [M+]; C20H23BrN2O2Pt (598.39): calc.
C 40.14, H 3.87, N 4.68; found C 40.34, H 3.90, N 4.74.
3 C. Bolm, K. Weickhardt, M. Zehnder and T. Ranff, Chem. Ber., 1991,
124, 1173; S. E. Denmark, R. A. Stavenger, A.-M. Faucher and J. P.
Edwards, J. Org. Chem., 1997, 62, 3375; M. A. Stark and C. J. Richards,
Tetrahedron Lett., 1997, 38, 5881; M. A. Stark, G. Jones and C. J.
Richards, Organometallics, 2000, 19, 1282.
4 R. Rasappan, D. Laventine and O. Reiser, Coord. Chem. Rev., 2008,
252, 702.
5 G. Desimoni, G. Faita and K. A. Jorgensen, Chem. Rev., 2006, 106,
3561.
6 Q. Luo, S. Eibauer and O. Reiser, J. Mol. Catal. A: Chem., 2007, 268,
65.
Synthesis of 7c
Following the same procedure as for 7a, 187 mg (53%) of 7c were
obtained: 1H NMR (300 MHz, CD2Cl2): d = 8.25(s, satellite JPt–H
=
3.4 Hz, 1H), 7.45(d, J = 7.7 Hz, satellite JPt–H = 3.2 Hz, 1H),
7.33(d, J = 6.7 Hz, satellite JPt–H = 3.1 Hz, 1H), 7.16 (t, J = 6.9 Hz,
1H), 6.82(s, satellite JPt–H = 10.5 Hz, 1H), 4.30 (q, J = 7.0 Hz,
2H), 3.99 (s, 3H), 1.50(t, J = 7.1 Hz, 3H). 13C NMR (75 MHz,
CD2Cl2): d = 175.4, 164.1, 159.5, 159.1, 156.6, 142.2 (satellite
JPt–C = 15.0 Hz), 134.2, 129.0, 126.8, 123.9, 123.6, 123.3, 99.9
(satellite JPt–C = 22.8 Hz), 70.5, 53.4, 14.7. MS (FI-FDMS): m/z
(%) = 1176.0 (16) [2M+], 588.3 (100) [M+]. Elemental Analysis for
C16H13BrN2O5Pt: Found C 32.78, H 2.18, N 4.74, Calcd. C 32.67,
H 2.23, N 4.76.
7 A. F. Rausch, H. H. H. Homeier and H. Yersin, Top. Organomet. Chem.,
2010, 29, 193.
8 J. A. G. Williams, S. Develay, D. L. Rochester and L. Murphy, Coord.
Chem. Rev., 2008, 252, 2596; M. Cocchi, D. Virgili, V. Fattori, D. L.
Rochester and J. A. G. Williams, Adv. Funct. Mater., 2007, 17, 285; X.
Yang, Z. Wang, S. Madakuni, J. Li and G. E. Jabbour, Adv. Mater.,
2008, 20, 2405.
9 H. Yersin, (Ed.), Highly Efficient OLEDs with Phosphorescent Materi-
als, Wiley-VCH, Weinheim, 2008.
10 M. V. Kulikova, K. P. Balashev and H. Yersin, Russ. J. Gen. Chem.,
2003, 73, 1839.
11 H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer,
Coord. Chem. Rev., 2011, DOI: 10.1016/j.ccr.2011.01.042.
12 D. Ravindranathan, D. A. K. Vezzu, L. Bartolotti, P. D. Boyle and S.
Huo, Inorg. Chem., 2010, 49, 8922.
Spectroscopy
For ambient temperature measurements, the materials were dis-
solved in CH2Cl2, while ethanol was used as solvent at 77 K.
All solvents were of spectroscopic grade, the concentration of the
solutions was ª 10-5 mol/L. Absorption spectra were recorded
with a Varian Cary 300 double beam spectrometer. Emission
spectra at 300 and at 77 K were measured with a steady-state
fluorescence spectrometer (Jobin Yvon Fluorolog 3). Lumines-
cence quantum yields were determined with a commercially
available system for the measurements of absolute quantum yields
(Hamamatsu Photonics C9920-02).27 The estimated relative error
of the quantum yields is about 10%. Fluid solutions were degassed
by at least three pump–freeze–thaw cycles with a final vapor
pressure at 77 K of ª 10-5 mbar. A pulsed diode laser (PicoQuant
PDL 800-B) with a pulse width of about 500 ps (excitation
wavelength of 372 nm) or a nitrogen laser (MNL100, Lasertechnik
Berlin) with a pulse width of 3 ns (excitation wavelength of 337 nm)
were applied as excitation sources for decay time measurements.
Decay times were registered using a FAST Comtec multichannel
scaler PCI card with a time resolution of 250 ps.
13 W. Lu, B. X. Mi, M. C. W. Chan, Z. Hui, C. M. Che, N. Zhu and S.
T. Lee, J. Am. Chem. Soc., 2004, 126, 4958; H. F. Xiang, S. W. Lai,
P. T. Lai, C. M. Che, in: Highly Efficient OLEDs with Phosphorescent
Materials (Ed.: H. Yersin), Wiley-VCH, Weinheim, 2008, p. 259.
14 Y. Motoyama, M. Okano, H. Narusawa, N. Makihara, K. Aoki and
H. Nishiyama, Organometallics, 2001, 20, 1580.
15 D. R. Williams, P. D. Lowder, Y.-G. Gu and D. A. Brooks, Tetrahedron
Lett., 1997, 38, 331.
16 D. J. Ca´rdenas, A. M. Echavarren and M. C. Ram´ırez de Arellano,
Organometallics, 1999, 18, 3337.
17 More recent work has demonstrated that cyclopalladated and cyclo-
platinated N,C,N-pincer complexes of related pyridine ligands can
be prepared from the debrominated ligands under different reaction
conditions, see B. Solo, S. Stoccoro, G. Minghetti, A. Zucca, M. A.
Cinellu, M. Manassero and S. Gladiali, Inorg. Chim. Acta, 2006, 359,
1879; B. Solo, S. Stoccoro, G. Minghetti, A. Zucca, M. A. Cinellu, S.
Gladiali, M. Manassero and M. Sansoni, Organometallics, 2005, 24, 53
We thank one of the referees for pointing us towards this work.
18 Details on the X-ray structures† can be obtained from the Cambridge
Crystallographic Data Centre.
19 M. Q. Slagt, G. Rodriguez, M. M. P. Grutters, R. Gebbink, W. Klopper,
L. W. Jenneskens, M. Lutz, A. L. Spek and G. van Koten, Chem.–Eur.
J., 2004, 10, 1331.
20 A. F. Rausch, L. Murphy, J. A. G. Willians and H. Yersin, Inorg.
Chem., 2009, 48, 11407; J. A. G. Williams, A. Beeby, F. S. Davies, J. A.
Weinstein and C. Wilson, Inorg. Chem., 2003, 42, 8609; S. J. Farley, D.
L. Rochester, A. L. Thompson, J. A. K. Howard and J. A. G. Williams,
Inorg. Chem., 2005, 44, 9690; Z. Wang, E. Turner, V. Mahoney, S.
Madakuni, T. Groy and J. Li, Inorg. Chem., 2010, 49, 11276.
21 H. Yersin and D. Donges, Top. Curr. Chem., 2001, 214, 81.
22 V. Fattori, J. A. G. Williams, L. Murphy, M. Cocchi and J. Kalinowski,
Photonics Nanostruct., 2008, 6, 225; M. Cocchi, J. Kalinowski, L.
Murphy, J. A. G. Williams and V. Fattori, Org. Electron., 2010, 11,
388.
Acknowledgements
This work was supported by the Alexander v. Humboldt and the
Friedrich Neumann foundation, the EU-Asia link program, the
Fonds der Chemischen Industrie, and the Bundesministerium fu¨r
Bildung und Forschung (BMBF).
23 E. M. Kober, J. V. Caspar, R. S. Lumpkin and T. J. Meyer, J. Phys.
Chem., 1986, 90, 3722; D. J. Stufkens and A. Vlcˇek Jr., Coord. Chem.
Rev., 1998, 177, 127.
Notes and references
1 D. Morales-Morales, C. M. Jensen, The Chemistry of Pincer Com-
pounds, Elsevier, Oxford, U. K., 2007; M. Albrecht and G. van Koten,
Angew. Chem., Int. Ed., 2001, 40, 5000; F. Neve, A. Crispini, C. D. Pietro
and S. Campagna, Organometallics, 2002, 21, 3511; Y. Wakatsuki,
H. Yamazaki, P. A. Grutsch, M. Santhaman and C. Kutal, J. Am.
Chem. Soc., 1985, 107, 8153; I. Aiello, D. Dattilo, M. Ghedini and A.
Golemme, J. Am. Chem. Soc., 2001, 123, 5598.
24 J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau
and M. E. Thompson, Inorg. Chem., 2002, 41, 3055.
25 S. L. Murov, J. Carmichael, G. L. Hug, Handbook of Photochemistry,
2nd Ed. Marcel Dekker, New York, 1993, p. 340.
26 Cf . H. Yersin, D. Donges, W. Humbs, J. Strasser, R. Sitters and M.
Glasbeek, Inorg. Chem., 2002, 41, 4915.
2 H. Lang, R. Packheiser and B. Walfort, Organometallics, 2006, 25,
1836; M. Q. Slagt, D. A. P. van Zwieten, A. Moerkerk, R. Gebbink
and G. van Koten, Coord. Chem. Rev., 2004, 248, 2275; H. Nishiyama,
Chem. Soc. Rev., 2007, 36, 1133.
27 K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H.
Ishida, Y. Shiina, S. Oishi and S. Tobita, Phys. Chem. Chem. Phys.,
2009, 11, 9850; H. Ishida, S. Tobita, Y. Haegawa, R. Katoh and K.
Nozaki, Coord. Chem. Rev., 2010, 254, 2449.
8806 | Dalton Trans., 2011, 40, 8800–8806
This journal is
The Royal Society of Chemistry 2011
©