4802
L. S. Bennie et al. / Tetrahedron Letters 52 (2011) 4799–4802
Table 2
4-Methoxyphenyl boronic acid additions to heteroaryl N-oxides
B(OH)2
DMF,110 oC,
20 h
+
N
N+
O
MeO
OMe
(2 eq.)
Entry
1
N-oxide
Product
Yield (%)a
0
N+
O
N
N
MeO
MeO
2
3
10
51
N+
O
Ph
Ph
Ph
Ph
N
N
N
N
N
N+
O
MeO
N
CO2Et
CF3
CO2Et
CF3
N+
O-
N
N
4b
32
OMe
a
Isolated yield.
Reaction time of 60 h.
b
7. (a) Andersson, H.; Almqvist, F.; Olsson, R. Org. Lett. 2007, 9, 1335–1337; (b)
Andersson, H.; Banchelin, T. S.-L.; Das, S.; Olsson, R.; Almqvist, F. Chem.
Commun. 2010, 3384–3386.
8. Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1997, 119, 445–446.
9. For a silver-catalysed direct arylation of electron-deficient heterocycles with
boronic acids, see: Seiple, I. B.; Su, S.; Rodriguez, R. A.; Giantassio, R.; Fujiwara,
Y.; Sobel, A. L.; Baran J. Am. Chem. Soc. 2010, 132, 13194–13196.
10. Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed.
2004, 43, 1871–1876.
11. Chung, J. Y. L.; Cvetovich, R. J.; McLaughlin, M.; Amato, J.; Tsay, F.-R.; Jensen, M.;
Weissman, S.; Zewge, D. J. Org. Chem. 2006, 71, 8602–8609.
12. A control experiment showed that heating the naphthyridine N-oxide from
Scheme 1 (X = H) in DMF for 16 h led to complete deoxygenation to the
respective naphthyridine.
In summary, a novel and user-friendly process for the arylation
of 1,8-naphthyridine N-oxides is reported that can be extended to
other electron-deficient heterocycles.13 The application of this
methodology to the discovery of novel agrochemicals is ongoing
within our laboratories.
Acknowledgement
We thank Andrew Blackaby (Syngenta) for mass spectrometry
assistance.
13. Typical experimental procedure (Table 1, entry 2): A round bottom flask was
charged with the naphthyridine N-oxide (286 mg, 1 mmol), 2,6-
dimethoxyphenyl boronic acid (364 mg, 2 mmol), DMF (6 mL) and a stir bar.
A reflux condenser was fitted and the reaction heated to 110 °C for 16 h. After
cooling, the solvent was removed under high vacuum and the residue was
purified by flash chromatography (hexane/EtOAc, 8:2) to afford the desired
References and notes
1. Litvinov, V. P. Adv. Heterocycl. Chem. 2006, 91, 189–300.
2. (a) Mitchell, G.; Salmon, R; Bacon, D. P.; Aspinall, I. H.; Briggs, E.; Avery, A. J.;
Morris, J. A.; Russell, C. J. W.O. Patent 2009115788; Chem. Abstr. 2009, 151,
403283; (b) Burton, P. M.; Morris, J. A. Org. Lett. 2010, 9, 2373–2375.
3. For the effect of base on the regioselectivity of pyridine N-oxide chlorination,
see: Jung, J.-C.; Jung, Y.-J.; Park, O.-S. Synth. Commun. 2001, 31,
2507–2511.
4. For the synthesis of the 6-halo-substituted naphthyridines, see: Ref. 2a.
5. Caron, S.; Do, N. M.; Sieser, J. E. Tetrahedron Lett. 2000, 41, 2299–2302.
6. (a) Campeau, L. C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020–
18021; (b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006, 45,
7781–7786.
product,
7-(2,6-dimethoxyphenyl)-2-trifluoromethyl-[1,8]naphthyridine-3-
carboxylic acid ethyl ester (2a), as a pale yellow solid (252 mg, 63%), mp:
145-147 °C. 1H NMR (400 MHz, CDCl3) dH 8.75 (1H, s), 8.31 (1H, d, J = 8.4 Hz),
7.71 (1H, d, J = 8.4 Hz), 7.38 (1H, t, J = 8.4 Hz) 6.67 (2H, d, J = 8.4 Hz), 4.49 (2H,
q, J = 7.2 Hz), 3.72 (6H, s), 1.45 (3H, t, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3) dC
165.2, 162.8, 160.0, 154.6, 147.3 (q, J = 35.7 Hz), 141.0, 136.0, 130.7, 128.5,
124.8, 121.3, 120.8 (q, J = 270 Hz), 117.9, 115.0, 62.6, 55.8, 13.9. MS (ES) m/z
407 [M+H]+. HRMS (ES+) calcd For C20H18N2O4F3 [M+H]+ 406.1140, found
406.1120.