Journal of the American Chemical Society
ARTICLE
because there are two main paths to the product. If one
diastereotopic iodine atom is abstracted in the first step, then
the system follows one path to the product. Abstraction of the
other iodine atom might initially appear to be a wrong turn, but
instead the product is simply reached by the other path. In
essence, the system is self-correcting provided that the kinetics
are in order to prevent any of several other possible wrong turns
along the way.
This unusual case of reaction selectivity has been demon-
strated on aryl radical cascades comprising cyclization and
bimolecular trapping. The net result is product selection between
two constitutional isomers (reduced and cyclized), and high
yields of cyclized products are obtained. However, underlying
this outcome is a key aspect of stereoselectivity. The initial
rotationally isomeric radicals 12 cyclize not to the same product
at different rates but instead to different products (NꢀAr twist
isomers 13) at different rates. One of these stereoisomeric pro-
ducts is so high in energy that the radical cyclization producing it
cannot compete at all with bimolecular reduction.
1997, 8, 3955–3975. (c) Itai, A.; Toriumi, Y.; Saito, S.; Kagechika, H.;
Shudo, K. J. Am. Chem. Soc. 1992, 114, 10649–10650.
(7) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841–1860.
(8) Traces of two unidentified byproducts (7% and 2%) accounted
for the balance of the starting material.
(9) According to NMR analysis, final product 11 was a 78:22 mixture
of amide CꢀN rotamers. The proton in the position ortho to the
nitrogen atom of the major rotamer showed a downfield shift of about
1.0 ppm relative to the other signals of the aromatic protons. This may
have been caused by the proximity of the carbonyl group to this proton
in the Z isomer, and this isomer can be tentatively assigned as the
predominant one.
(10) (a) Kagan, H. B. Croat. Chem. Acta 1996, 69, 669–680.
(b) Kumar, R. R.; Kagan, H. B. Adv. Synth. Catal. 2010, 352, 231–242.
(11) Chatgilialoglu, C.; Newcomb, M. Adv. Organomet. Chem. 1999,
44, 67–112.
(12) (a) Tabata, H.; Nakagomi, J.; Morizono, D.; Oshitari, T.;
Takahashi, H.; Natsugari, H. Angew. Chem., Int. Ed. 2011, 50, 3075–3079.
(b) Takahashi, H.; Wakamatsu, S.; Tabata, H.; Oshitari, T.; Harada, A.;
Inoue, K.; Natsugari, H. Org. Lett. 2011, 13, 760–763.
(13) Keller, A. I. Ph.D. Thesis, UniversityofPittsburgh, Pittsburgh, PA,
(14) (a) Kozuch, S.; Gruzman, D.; Martin, J. M. L. J. Phys. Chem. C
2010, 114, 20801–20808. (b) Goerigk, L.; Grimme, S. J. Chem. Theory
Comput. 2011, 7, 291–309. (c) Goerigk, L.; Grimme, S. Phys. Chem.
Chem. Phys. 2011, 13, 6670–6688. (d) Grimme, S.; Antony, J.; Ehrlich,
S.; Krieg, H. J. Chem. Phys. 2010, 132, No. 154104. (e) Grimme, S.;
Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465. (f)
Weigend, F.; Furche, F.; Ahlrichs, R. J. Chem. Phys. 2003, 119,
12753–12762. (g) Sch€afer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys.
1994, 100, 5829–5835. (h) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem.
Phys. 2005, 7, 3297–3305.
The ability to map out two separate, nonintersecting pathways
to the same destination is a feature of the steady state, not of
radical reactions per se. Therefore, the principles of product
selection outlined herein are applicable in other areas such as
catalysis where reactive intermediates are involved.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
compound characterization data. This material is available free of
(15) Vaillard, S. E.; M€uck-Lichtenfeld, C.; Grimme, S.; Studer, A.
Angew. Chem., Int. Ed. 2007, 46, 6533–6536.
(16) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical
Reactions:Concepts, Guidelines, andSyntheticApplications; VCH: Weinheim,
Germany, 1996.
’ AUTHOR INFORMATION
Corresponding Author
studer@uni-muenster.de; curran@pitt.edu
’ ACKNOWLEDGMENT
We thank the DFG and the National Science Foundation
for support of the work in Germany and the U.S., respectively.
D.P.C. thanks the Humboldt Foundation for a Senior Research
Fellowship.
’ REFERENCES
(1) Eliel, E. L.; Wilen, S. Stereochemistry of Organic Compunds; Wiley-
Interscience: New York, 1994.
(2) The analysis assumes that there are no additional reactions
outside of those shown.
(3) (a) DeMello, N. C.; Curran, D. P. J. Am. Chem. Soc. 1998,
120, 329–341. (b) Curran, D. P.; Qi, H. Y.; DeMello, N. C.; Lin, C. H.
J. Am. Chem. Soc. 1994, 116, 8430–8431.
(4) (a) Curran, D. P.; Lin, C. H.; DeMello, N.; Junggebauer, J. J. Am.
Chem. Soc. 1998, 120, 342–351. (b) Andrukiewicz, R.; Cmoch, P.;
Gawez, A.; Staliꢀnski, K. J. Org. Chem. 2004, 69, 1844–1848. (c) Stalinski,
K.; Curran, D. P. J. Org. Chem. 2002, 67, 2982–2988.
(5) (a) Guthrie, D. B.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc.
2011, 133, 115–122. (b) Bruch, A.; Ambrosius, A.; Fr€ohlich, R.; Studer,
A.; Guthrie, D. B.; Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2010,
132, 11452–11454.
(6) (a) Stewart, W. E.; Siddall, T. H. Chem. Rev. 1970, 70, 517–551.
(b) Curran, D. P.; Hale, G. R.; Geib, S. J.; Balog, A.; Cass, Q. B.; Degani,
A. L. G.; Hernandes, M. Z.; Freitas, L. C. G. Tetrahedron: Asymmetry
16276
dx.doi.org/10.1021/ja2070347 |J. Am. Chem. Soc. 2011, 133, 16270–16276