Journal of Medicinal Chemistry
ARTICLE
in media; control experiment assessing chemical conversion of
prodrug 14 to derivatized bisphosphonate 18. This material is
(7) Frith, J. C.; Monkkonen, J.; Blackburn, G. M.; Russell, R. G. G.;
Rogers, M. J. Clodronate and Liposome-Encapsulated Clodronate Are
Metabolized to a Toxic ATP Analog, Adenosine 50-(beta,gamma-
dichloromethylene)Triphosphate, by Mammalian Cells in Vitro. J. Bone
Miner. Res. 1997, 12 (9), 1358–1367.
(8) Lehenkari, P. P.; Kellinsalmi, M.; Napankangas, J. P.; Ylitalo,
K. V.; Monkkonen, J.; Rogers, M. J.; Azhayev, A.; V€a€an€anen, K. Further
Insight into Mechanism of Action of Clodronate: Inhibition of Mito-
chondrial ADP/ATP Translocase by a Nonhydrolyzable, Adenine-
Containing Metabolite. Mol. Pharmacol. 2002, 62, 1255–1262.
(9) Domcheck, S. M.; Younger, J.; Finkelstein, D. M.; Seiden, M. V.
Predictors of Skeletal Complications in Patients with Metastic Breast
Carcinoma. Cancer 2000, 89, 363–368.
(10) Knight, L. A.; Conroy, M; Fernando, A.; Polak, M.; Kurbacher,
C. M.; Cree, I. A. Pilot Studies of the Effect of Zoledronic Acid (Zometa)
on Tumor-Derived Cells ex Vivo in the ATP-Based Tumor Chemo-
sensitivity Assay. Anti-Cancer Drugs 2005, 16 (9), 969–976.
(11) Matsumoto, S.; Kimura, S.; Segawa, H.; Kuroda, J.; Yuasa, T.;
Sato, K.; Nogawa, M.; Tanaka, F.; Maekawa, T.; Wada, H. Efficacy of the
Third-Generation Bisphosphonate Zoledronic Acid Alone and Com-
bined with Anti-Cancer Agents against Small Cell Lung Cancer Cell
Lines. Lung Cancer 2005, 47 (1), 31–39.
(12) Li, Y.; Chang, J. W.; Chou, W. C.; Liaw, C. C.; Wang, H. M.;
Huang, J. S.; Wang, C. H.; Yeh, K. Y. Zoledronic Acid Is Unable to
Induce Apoptosis, but Slows Tumor Growth and Prolongs Survival for
Non-Small-Cell Lung Cancers. Lung Cancer 2008, 59 (2), 180–191.
(13) Wood, J.; Bonjean, K.; Ruetz, S.; Bellahcene, A.; Devy, L.;
Foidart, J. M.; Castronovo, V.; Gree, J. R. Novel Antiangiogenic Effects
of the Bisphosphonate Compound Zoledronic Acid. J. Pharmacol. Exp.
Ther. 2002, 302 (3), 1055–1061.
’ AUTHOR INFORMATION
Corresponding Author
*Phone: 410-502-4807. Fax: 410-955-3023. E-mail: cmeyers@
jhmi.edu.
’ DISCLOSURE
The contents of the studies are solely the responsibility of the
authors and do not necessarily represent the official view of
NCRR or NIH.
’ ACKNOWLEDGMENT
This research was supported by the Flight Attendants Medical
Research Institution (FAMRI) Center for Excellence at the
Johns Hopkins University School of Medicine. Mass spectro-
metry studies were supported by the Analytical Pharmacology
Core of the Sidney Kimmel Comprehensive Cancer Center at
Johns Hopkins (NIH Grants P30 CA006973 and UL1 RR025005
and the Shared Instrument Grant 1S10RR026824-01). Mass spec-
trometry studies were supported in part by Grant UL1 RR 025005
from the National Center for Research Resources (NCRR), a
component of the National Institutes of Health (NIH) and NIH
Roadmap for Medical Research. We thank Dr. Charles Rudin and
Dr. Richard Borch for critical evaluation of the manuscript. We also
thank Dr. Timothy Burns for his contribution to the design and
analysis of flow cytometery experiments.
(14) Croucher, P. I.; De Raeve, H.; Perry, M. J.; Hijzen, A.; Shipman,
C. M.; Lippitt, J.; Green, J.; Van Marck, E.; Van Camp, B.; Venderkerken,
K. Zoledronic Acid Treatment of 5T2MM-Bearing Mice Inhibits the
Development of Myeloma Bone Disease: Evidence for Decreased
Osteolysis, Tumor Burden and Angiogenesis, and Increased Survival.
J. Bone Miner. Res. 2003, 18 (3), 482–492.
’ ABBREVIATIONS USED
(15) Santini, D.; Vincenzi, B.; Galluzzo, S.; Battistoni, F.; Rocci, L.;
Venditti, O.; Schiavon, G.; Angeletti, S.; Uzzalli, F.; Caraglia, M.;
Dicuonzo, G.; Tonini, G. Repeated Intermittent Low-Dose Therapy
with Zoledronic Acid Induces an Early, Sustained, and Long-Lasting
Decrease of Peripheral Vascular Endothelial Growth Factor Levels in
Cancer Patients. Clin. Cancer Res. 2007, 13 (15), 4482–4486.
(16) Hamma-Kourbali, Y.; Di Benedetto, M.; Ledoux, D.; Oudar,
O.; Leroux, Y.; Lecouvey, M.; Kraemer, M. A Novel Non-Containing-
Nitrogen Bisphosphonate Inhibits Both in Vitro and in Vivo Angiogen-
esis. Biochem. Biophys. Res. Commun. 2003, 310 (3), 816–823.
(17) Lipton, A. Emerging Role of Bisphosphonates in the Clinic—
Antitumor Activity and Prevention of Metatasis to Bone. Cancer Treat.
Rev. 2008, 34, 525–530.
(18) M€onkk€onen, H.; Kuokkanen, J.; Holen, I.; Evans, A.; Lefley,
D. V.; Jauhiainen, M.; Auriola, S.; M€onkk€onen, J. Bisphosphonate-
Induced ATP Analog Formation and Its Effect on Inhibition of Cancer
Cell Growth. Anti-Cancer Drugs 2008, 19 (4), 391–399.
(19) Russell, R. G. G.; Watts, N. B.; Ebetino, F. H.; Rogers, M. J.
Mechanisms of Action of Bisphosphonates: Similarities and Differences
and Their Potential Influence on Clinical Efficacy. Osteoporosis Int. 2008,
19 (6), 733–759.
(20) Ahlmark, M.; Vepsalainen, J.; Taipale, H.; Niemi, R.; Jarvinen,
T. Bisphosphonate Prodrugs: Synthesis and in Vitro Evaluation of Novel
Clodronic Acid Dianhydrides as Bioreversible Prodrugs of Clodronate.
J. Med. Chem. 1999, 42 (8), 1473–1476.
(21) Vepsalainen, J. Bisphosphonate Prodrugs. Curr. Med. Chem.
2002, 9, 1201–1208.
(22) Zhang, Y.; Leon, A.; Song, Y.; Studer, D.; Haase, C.; Koscielski,
L. A.; Oldfield, E. Activity of Nitrogen-Containing and Non-Nitrogen
Containing Bisphosphonates on Tumor Cell Lines. J. Med. Chem. 2006,
49 (9), 5804–5814.
BP, bisphosphonates; NBP, nitrogen-containing bisphospho-
nates; NNBP, non-nitrogen-containing bisphosphonates; SCLC,
small-cell lung cancer; NSCLC, non-small-cell lung cancer; FPP,
farnesyl pyrosphosphate;FPPS, farnesyl pyrophosphate synthase;
SKE, skeletal related events
’ REFERENCES
(1) Morgan, G.; Lipton, A. Antitumor Effects and Anticancer
Applications of Bisphosphonates. Semin. Oncol. 2010, 37 (5), S30–S40.
(2) Gnant, M. Bisphosphonates in the Prevention of Disease Rcur-
rence: Current Results and Ongoing Trials. Curr. Cancer Drug Targets
2009, 9, 824–833.
(3) Boissier, S.; Magnetto, S.; Frappart, L.; Cuzin, B.; Ebetino, F. H.;
Delmas, P. D.; Clezardin, P. Bisphosphonates Inhibit Prostate and
Breast Carcinoma Cell Adhesion to Unmineralized and Mineralized
Bone Extracellular Matrices. Cancer Res. 1997, 57 (18), 3890–3894.
(4) Boissier, S.; Ferreras, M.; Peyruchaud, O.; Magnetto, S.; Ebetino, F. H.;
Colombel, M.; Delmas, P.; Delaissꢀe, J. M.; Clꢀezardin, P. Bisphosphonates
Inhibit Breast and Prostate Carcinoma Cell Invasion, an Early Event in the
Formation of Bone Metastases. Cancer Res. 2000, 60 (11), 2949–2954.
(5) R€aikk€onen, J.; Taskinen, M.; Dunford, J. E.; M€onkk€onen, H.;
Auriola, S.; M€onkk€onen, J. Correlation between Time-Dependent
Inhibition of Human Farnesyl Pyrophosphate Synthase and Blockade
of Mevalonate Pathway by Nitrogen-Containing Bisphosphonates in
Cultured Cells. Biochem. Biophys. Res. Commun. 2011, 407, 663–667.
(6) Rogers, M. J.; Ji, X. H.; Russell, R. G. G.; Blackburn, G. M.;
Williamson, M. P.; Bayless, A. V.; Ebetino, F. H.; Watts, D. J. Incorpora-
tion of Bisphosphonates into Adenine-Nucleotides by Amebas of the
Cellular Slime-Mold Dictyostelium discoideum. Biochem. J. 1994, 303,
303–311.
6655
dx.doi.org/10.1021/jm200521a |J. Med. Chem. 2011, 54, 6647–6656