5212
M. Rami et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5210–5213
Schlicker, C.; Hall, R. A.; Vullo, D.; Middelhaufe, S.; Gertz, M.; Supuran, C. T.;
Muhlschlegel, F. A.; Steegborn, C. J. Mol. Biol. 2009, 385, 1207.
(vii) The mycobacterial enzyme mtCA 1 was weakly inhibited by
sulfonamides 3–6, with KIs in the range of 3.70–4.48 M,
l
10. (a) Syrjänen, L.; Tolvanen, M.; Hilvo, M.; Olatubosun, A.; Innocenti, A.;
Scozzafava, A.; Leppiniemi, J.; Niederhauser, B.; Hytönen, V. P.; Gorr, T. A.;
Parkkila, S.; Supuran, C. T. BMC Biochem. 2010, 11, 28; (b) Minakuchi, T.;
Nishimori, I.; Vullo, D.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2009, 52,
2226; (c) Nishimori, I.; Minakuchi, T.; Vullo, D.; Scozzafava, A.; Innocenti, A.;
Supuran, C. T. J. Med. Chem. 2009, 52, 3116; (d) Burghout, P.; Vullo, D.;
Scozzafava, A.; Hermans, P. W. M.; Supuran, C. T. Bioorg. Med. Chem. 2011, 19,
243.
11. The rhodamine B–benzenesulfonamides conjugates 3–6 were synthesized as
follows: Rhodamine B (1 mmol) 1 was dissolved in phosphorus oxychloride
POCl3 (27 mmol). The mixture was refluxed overnight. After cooling at room
temperature, the solvent was evaporated under reduced pressure. The
obtained rhodamine B acid chloride was dissolved in acetonitrile. (10 mL).
Benzenesulfonamide (2.5 mmol) derivatives 2 and triethylamine (3.6 mmol)
were added to the solution and stirred at room temperature overnight under
N2. The mixture was then concentrated under reduced pressure, water was
added to the residue, and the aqueous phase was extracted with methylene
chloride (2 Â 40 mL). The organic layer was washed twice with water, dried
over anhydrous Na2SO4, and concentrated under vacuum. The residue was
subjected to column chromatography (silica, CH2Cl2/MeOH, 99:1).
whereas the remaining two b-CAs from this pathogen were
at least one order of magnitude more sensitive to be inhib-
ited by these compounds. Indeed, against mtCA 2 the inhibi-
tion constants were in the range of 409–443 nM, and against
mtCA 3 in the range of 342–469 nM (Table 1). Thus, the new
sulfonamides reported here are less effective than AZA as
mtCA inhibitors.
(viii) The fungal enzyme from C. albicans caNce 103 was also
weakly inhibited by the compounds investigated here,
which showed KIs in the range of 4.09–5.32 lM.
In conclusion, we report the synthesis of a series of fluorescent
CA inhibitors, which were obtained by attaching rhodamine B moi-
eties to the scaffold of benzenesulfonamides. The new compounds
have been investigated for the inhibition of 12 human
a-CA iso-
Rhodamine B-sulfanilamide conjugate 3: Yield 29%, mp: 135–137 °C, 1H NMR
(400 MHz, DMSO-d6) d 1.05 (t, 12H, J = 6.8 Hz), 3.29 (m, 8H), 6.35–6.59 (m, 6H),
7.06–7.07 (m, 1H), 7.13 (d, 2H, J = 8.2 Hz) 7.26 (s, 2H, SO2NH2), 7.55–7.59 (m,
2H), 7.6 (d, 2H, J = 8.2 Hz), 7.9 (m, 1H). 13C NMR (101 MHz, DMSO-d6) d 12.23,
43.59, 66.40, 123.0, 123.64, 125.43, 124.87, 125.96, 126.08, 128.14, 128.55,
128.67, 133.77, 139.96, 140.89, 141.41, 151.42, 151.95, 167.05, MS (ESI+/ESIÀ)
m/z: 597.44 [M+H]+, 619.21 [M+Na]+, 595.37 [MÀH]À.
forms (hCA I–hCA XIV), three bacterial and one fungal b-class en-
zymes from the pathogens M. tuberculosis and C. albicans. All
types of inhibitory activities have been detected, with several com-
pounds showing low nanomolar inhibition against the transmem-
brane isoforms hCA IX, XII (cancer-associated) and XIV. The b-CAs
were inhibited in the micromolar range by these compounds
which may have applications for the imaging of hypoxic tumors
or bacteria due to their fluorescent moieties.
Rhodamine B-3-aminobenzenesulfonamide conjugate 4: Yield 32%, mp: 137–
139 °C, 1H NMR (400 MHz, DMSO-d6) d 1.05 (t, 12H, J = 6.8 Hz), 3.31 (m, 8H),
6.36–6.38 (m, 2H), 6.57 (s, 2H), 6.87–6.89 (m, 2H), 7.07 (d, 1H, J = 6.7 Hz), 7.38
(s, 2H), 7.36 (m, 2H), 7.55–7.65 (m, 4H), 7.91 (d, 1H, J = 6.7 Hz). 13C NMR
(101 MHz, DMSO-d6) d: 12.06, 45.23, 66.40, 115.81, 122.96, 123.19, 123.49,
128.83, 129.07, 129.23, 133.72, 133.92, 136.67, 137.17, 144.48, 151.95, 166.94,
MS (ESI+/ESIÀ) m/z: 597.44 [M+H]+, 595.44 [MÀH]À.
Acknowledgment
Rhodamine B-4-aminomethylbenzenesulfonamide conjugate 5: Yield 16%, mp
>205 °C, 1H NMR (400 MHz, DMSO-d6) d 1.06 (t, 12H, J = 6.8 Hz), 3.29 (q, 8H,
J = 6.9 Hz), 4.15 (s, 2H), 6.18 (m, 4H), 6.23 (s, 2H), 7.0 (d, 2H, J = 8.2 Hz), 7.09 (s,
1H), 7.15 (s, 2H), 7.44 (d, 2H, J = 8.2 Hz), 7.53–7.54 (m, 2H) 7.81–7.84 (m, 1H).
13C NMR (101 MHz, DMSO-d6) d 12.27, 42.85, 43.62, 64.37, 104.49, 96.92,108.
122.34, 123.73, 124.90, 128.06, 128.37, 128.52, 130.55, 132.81, 141.42, 142.11,
148.29, 152.72, 166.76, MS (ESI+/ESIÀ) m/z: 611.44 [M+H]+, 633.46 [M+Na]+,
609.39 [MÀH]À, 645.39 [M+Cl]À.
This research was financed in part by a 7 FP EU project (Metoxia).
References and notes
1. (a) Karstens, T.; Kobs, K. J. Phys. Chem. 1980, 84, 1871; (b) Setiawan, D.;
Kazaryan, A.; Martoprawiro, M. A.; Filatov, M. Phys. Chem. Chem. Phys. 2010, 12,
11238; (c) Kubin, R. J. Luminesc. 1983, 27, 455.
2. (a) Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Anal. Chem.
2011, 83, 3431; (b) Hossen, M. N.; Kajimoto, K.; Akita, H.; Hyodo, M.; Ishitsuka,
T.; Harashima, H. J. Controlled Release 2010, 147, 261.
3. (a) Stancu, M. M.; Grifoll, M. J. Gen. Appl. Microbiol. 2011, 57, 1; (b) Hoff, D. R.;
Ryan, G. J.; Driver, E. R.; Ssemakulu, C. C.; De Groote, M. A.; Basaraba, R. J.;
Lenaerts, A. J. PLoS One 2011, 6, e17550.
Rhodamine B-4-aminoethylbenzenesulfonamide conjugate 6: Yield 61%, mp: 117–
119 °C, 1H NMR (400 MHz, DMSO-d6) d 1.08 (t, 12H, J = 6.8 Hz), 2.48 (t, 2H,
J = 8.2 Hz), 3.33 (m, 10H), 6.27–6.42 (m, 6H), 7.03 (d, 2H, J = 8.2 Hz) 7.07–7.09
(m, 1H), 7.26 (s, 2H), 7.52–7.55 (m, 2H), 7.62 (d, 2H, J = 8.2 Hz), 7.78–7.81
(m, 1H). 13C NMR (101 MHz, DMSO-d6) d: 12.27, 33.69, 43.61, 45.49, 64.10,
97.10, 108.16,122.22, 104.94, 123.63, 125.64, 128.34, 128.57, 130.84, 132.60,
132.96, 142.01, 142.93, 148.34, 152.81, 166.33, MS (ESI+/ESIÀ) m/z: 625.44
[M+H]+, 647.48 [M+Na]+, 623.39 [MÀH]À.
4. (a) Cecchi, A.; Supuran, C. T. Curr. Pharm. Des. 2008, 14, 699; (b) Švastová, E.;
´
ˇ
Hulıková, A.; Rafajová, M.; Zatovicová, M.; Gibadulinová, A.; Casini, A.; Cecchi,
A.; Scozzafava, A.; Supuran, C.; Pastorek, J. FEBS Lett. 2004, 577, 439; (c) Cecchi,
A.; Hulikova, A.; Pastorek, J.; Pastoreková, S.; Scozzafava, A.; Winum, J.-Y.;
Montero, J.-L.; Supuran, C. T. J. Med. Chem. 2005, 48, 4834; (d) Alterio, V.; Vitale,
R. M.; Monti, S. M.; Pedone, C.; Scozzafava, A.; Cecchi, A.; De Simone, G.;
Supuran, C. T. J. Am. Chem. Soc. 2006, 128, 8329.
12. Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561. An Applied Photophysics stopped-
flow instrument has been used for assaying the CA catalysed CO2 hydration
activity. Phenol red (at a concentration of 0.2 mM) has been used as indicator,
working at the absorbance maximum of 557 nm, with 10–20 mM Hepes (pH
7.5, for the a-CAs) or TRIS (pH 8.3, for the b-CAs) as buffers, and 20 mM Na2SO4
or 20 mM NaClO4 (for maintaining constant the ionic strength), following the
initial rates of the CA-catalyzed CO2 hydration reaction for a period of 10–
100 s. The CO2 concentrations ranged from 1.7 to 17 mM for the determination
of the kinetic parameters and inhibition constants. For each inhibitor at least
six traces of the initial 5–10% of the reaction have been used for determining
the initial velocity. The uncatalyzed rates were determined in the same manner
and subtracted from the total observed rates. Stock solutions of inhibitor
(1 mM) were prepared in distilled–deionized water and dilutions up to 0.1 nM
were done thereafter with distilled-deionized water. Inhibitor and enzyme
solutions were preincubated together for 15 min at room temperature prior to
assay, in order to allow for the formation of the E–I complex. The inhibition
constants were obtained by non-linear least-squares methods using PRISM 3,
and the Cheng-Prosogg equation, as reported earlier,8,10 and represent the
mean from at least three different determinations. All CA isoforms were
recombinant ones obtained in house as reported earlier.13–16
5. a Zhou, Y.; Kim, Y. S.; Yan, X.; Jacobson, O.; Chen, X.; Liu, S. Mol. Pharm. in press.;
(b) Koide, Y.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. ACS Chem. Biol. 2011,
6, 600.
6. (a) Best, Q. A.; Xu, R.; McCarroll, M. E.; Wang, L.; Dyer, D. J. Org. Lett. 2010, 12,
3219; (b) Gottumukkala, V.; Heinrich, T. K.; Baker, A.; Dunning, P.; Fahey, F. H.;
Treves, S. T.; Packard, A. B. Nucl. Med. Biol. 2010, 37, 365; (c) Dubois, L.; Douma,
K.; Supuran, C. T.; Chiu, R. K.; van Zandvoort, M. A. M. J.; Pastoreková, S.;
Scozzafava, A.; Wouters, B. G.; Lambin, P. Radiother. Oncol. 2007, 83, 367; (d)
Dubois, L.; Lieuwes, N. G.; Maresca, A.; Thiry, A.; Supuran, C. T.; Scozzafava, A.;
Wouters, B. G.; Lambin, P. Radiother. Oncol. 2009, 92, 423.
7. (a) Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168; (b) Supuran, C. T. Bioorg. Med.
Chem. Lett. 2010, 20, 3467.
8. (a) Lou, Y.; McDonald, P. C.; Oloumi, A.; Chia, S. K.; Ostlund, C.; Ahmadi, A.; Kyle,
A.; Auf dem Keller, U.; Leung, S.; Huntsman, D. G.; Clarke, B.; Sutherland, B. W.;
Waterhouse, D.; Bally, M. B.; Roskelley, C. D.; Overall, C. M.; Minchinton, A.;
Pacchiano, F.; Carta, F.; Scozzafava, A.; Touisni, N.; Winum, J. Y.; Supuran, C. T.;
Dedhar, S. Cancer Res. 2011, 71, 3364; (b) Pacchiano, F.; Carta, F.; McDonald, P.
C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C. T. J. Med. Chem.
2011, 54, 1896.
9. (a) Hall, R. A.; Mühlschlegel, F. A. Fungal and Nematode Carbonic Anhydrases:
Their Inhibition in Drug Design. In Drug Design of Zinc-Enzyme Inhibitors:
Functional, Structural, and Disease Applications; Supuran, C. T., Winum, J. Y., Eds.;
John Wiley & Sons: Hoboken, 2009; pp 301–322; (b) Ohndorf, U. M.; Schlicker,
C.; Steegborn, C. Crystallographic Studies on Carbonic Anhydrases from Fungal
Pathogens for Structure-Assisted Drug Development. In Drug Design of Zinc-
Enzyme Inhibitors: Functional, Structural, and Disease Applications; Supuran, C. T.,
13. (a) Lehtonen, J. M.; Shen, B.; Vihinen, M.; Casini, A.; Scozzafava, A.; Supuran, C.
T.; Parkkila, A.-K.; Saarnio, J.; Kivelä, A. J.; Waheed, A.; Sly, W. S.; Parkkila, S. J.
Biol. Chem. 2004, 279, 2719; (b) Pastorekova, S.; Parkkila, S.; Pastorek, J.;
Supuran, C. T. J. Enzyme Inhib. Med. Chem. 2004, 19, 199; (c) Abbate, F.; Winum,
J. Y.; Potter, B. V. L.; Casini, A.; Montero, J. L.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2004, 14, 231; (d) Clare, B. W.; Supuran, C. T. J. Pharm.
Sci. 1994, 83, 768.
14. (a) Winum, J. Y.; Temperini, C.; El Cheikh, K.; Innocenti, A.; Vullo, D.; Ciattini, S.;
Montero, J. L.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2006, 49, 7024; (b)
Casini, A.; Scozzafava, A.; Mincione, F.; Menabuoni, L.; Ilies, M. A.; Supuran, C. T.
J. Med. Chem. 2000, 43, 4884; (c) Casey, J. R.; Morgan, P. E.; Vullo, D.;
Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. J. Med. Chem. 2004, 47,
2337.
Winum, J. Y., Eds.; John Wiley
& Sons: Hoboken, 2009; pp 323–334; (c)