L. Pehlivan et al. / Tetrahedron Letters 52 (2011) 4716–4719
4719
5627–5630; (c) Wheatley, J. R.; Bichard, C. J. F.; Mantell, S. J.; Son, J. C.; Hughes,
D. J.; Fleet, G. W. J.; Brown, D. J. Chem. Soc., Chem. Commun. 1993, 1065–1067;
(d) Gasey, M.; Manoge, A. C.; Murphy, P. J. Tetrahedron Lett. 1992, 33, 965–968;
(e) Delhaye, L.; Merschaert, A.; Diker, K.; Houpis, I. N. Synthesis 2006, 1437–
1443.
at low temperature, which seems to be due to the instability of this
most electron-rich aryl-epoxide under the reaction conditions.14
We also decided to test protic acids as catalysts instead of Me3-
SiI and we found that simple treatment of the aryl epoxides 1a–d
with 0.2 equiv of p-toluenesulfonic acid (PTSA) in CH2Cl2 at room
temperature has similar effect on this dealkylative lactonization
(Table 1, entries 1–4). Under these acidic conditions, the reaction
failed to occur with the methylenedioxy derivative 1h. However,
aryl-epoxides 1i–j with electron-donating group such as the 4-
methoxy or 4-methyl moieties proceeded efficiently to give the
corresponding lactones 2i–j in rather good yields.
The reaction of the unfunctionalized epoxy-ester derivative 1m
and the methyl analog 1l takes a different course when these com-
pounds were treated according to the standard procedures de-
scribed above. Thus reaction of 1l and 1m with Me3SiI did not
give any desired cyclization product but led to the ring opened
products 5 and 6, respectively, in good yields. Under TsOH cataly-
sis, only decomposition of the starting material was observed for
unfunctionalized epoxide 1m while reaction of the methyl substi-
tuted epoxide 1l needed the presence of equimolar amounts of acid
3. For some recent reviews on the synthesis of c-lactones see: (a) Gil, S.; Parra, M.;
Rodriguez, P.; Segura, J. Mini-Rev. Org. Chem. 2009, 6, 345–358; (b) Seitz, M.;
Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285–292.
4. Bouyssi, D.; Cavicchioli, M.; Large, S.; Monteiro, N.; Balme, G. Synlett 2000, 749–
751.
5. (a) Nacro, K.; Baltas, M.; Escudier, J.-M.; Gorrichon, L. Tetrahedron 1997, 53,
659–672; (b) Enomoto, M.; Kuwahara, S. Angew. Chem., Int. Ed. 2009, 48, 1144–
1148.
6. (a) Nacro, K.; Gorrichon, L.; Escudier, J.-M.; Baltas, M. Eur. J. Org. Chem. 2001, 22,
4247–4258; (b) Owen, R. M.; Roush, W. R. Org Lett. 2005, 7, 3941–3944.
7. Antoniotti, S.; Duñach, E. Tetrahedron Lett. 2009, 50, 2536–2539.
8. (a) Kende, A. S.; Toder, B. H. J. Org. Chem. 1982, 47, 163–167; (b) Mohr, P.;
Rösslein, L.; Tamm, C. Tetrahedron Lett. 1989, 30, 2513–2516; (c) Concellon, J.
M.; Riego, E.; Bernad, P. L. Org. Lett. 2002, 4, 1303–1305; (d) Wang, J.-X.; Zhang,
C.-X.; Li, Y.; You, Q.-D. J. Chin. Chem. Soc. 2006, 53, 349–358; (e) Urano, H.;
Enomoto, M.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2010, 74, 152–157.
9. Radical cyclization: (a) Baciocchi, E.; Paolobelli, A. B.; Ruzziconi, R. Tetrahedron
1992, 48, 4617–4622; (b) Powel, L. H.; Docherty, P. H.; Hulcoop, D. G.;
Kemmitt, P. D.; Burton, J. W. Chem. Commun. 2008, 2559–2561; (c) Davies, J. J.;
Krulle, T. M.; Burton, J. W. Org. Lett 2010, 12, 2738–2741; Iodocyclization:
(a) Curran, D. P.; Chang, C.-T. J. Org. Chem. 1989, 54, 3140–3157; (b) Kitagawa,
O.; Inoue, T.; Hirano, K.; Taguchi, T. J. Org. Chem. 1993, 58, 3106–3112;
(c) Inoue, T.; Kitagawa, O.; Oda, Y.; Taguchi, T. J. Org. Chem. 1996, 61, 8256–
8263.
10. All unsaturated substrates used in this study were obtained according to
procedures previously reported by our group: for the preparation of
stereodefined arylidene- and alkylidene-cyclopentanes 4a–d, 4h–j, and 4l,
see: Montel, S.; Bouyssi, D.; Balme, G. Adv. Synth. Catal. 2010, 352, 2315–2320;
For the synthesis of substituted methylenecyclopentanes 4e–g, see: Coia, N.;
Bouyssi, D.; Balme, G. Eur. J. Org. Chem. 2007, 3158–3165.
11. For the synthesis of methylenecyclopentane 4m, see: Bouyssi, D.; Monteiro, N.;
Balme, G. Tetrahedron Lett. 1999, 40, 1297–1300; For the synthesis of 4k see:
Fournet, G.; Balme, G.; Gore, J. Tetrahedron 1991, 47, 6293–6304.
12. Ishikawa, K.; Charles, H. C.; Griffin, G. W. Tetrahedron Lett. 1977, 427–430.
13. Crystallographic data for compound 5a have been deposited with the
Cambridge Crystallographic Data Centre, No CCDC 819990. Copies of the data
can be obtained, free of charge, on application to CCDC (e-mail:
deposit@ccdc.cam.ac.uk).
to go to completion. Under these conditions the linear a-tosyloxy
ketone 7 was obtained. These three linear substrates were believed
to result from attack by halide ions or p-TsOH on the primary or
secondary epoxy carbon followed by a cyclopentane ring opening
reaction.15 A reductive dehalogenation of the resulting
a-iodoke-
tone in the presence of iodide ions could be envisaged for the
formation of linear adduct 5.16
The difference of reactivity (intra- vs inter-molecular nucleo-
philic attack of epoxide) between the aryl substituted epoxides
1a–k and epoxides 1l–m may be attributed to stabilizing effects of
the aryl substituent on the development of a partial positive charge
at the benzylic position.
In conclusion, we have shown that stereochemically defined
14. The instability of such electron-rich aryl epoxides has previously been reported
see: Aldous, D. J.; Batsanov, A. S.; Yufit, D. S.; Dalençon, A. J.; Dutton, W. M.;
Steel, P. G. Org. Biomol. Chem. 2006, 4, 2912–2927.
15. Wawrzenczyk, C.; Grabarczyk, M.; Bialonska, A.; Ciunik, Z. Tetrahedron 2003,
59, 6595–6601.
densely functionalized fused d-hydroxy-c-lactones could be pre-
pared via dealkylative cyclization reaction.17 The synthetic utility
of this reaction for the preparation of oxygenated furofuran lignans
will be explored in a subsequent work.18
16. Erian, A. W.; Sherif, S. M.; Gaber, H. M. Molecules 2003, 8, 793–865; Olah, G. A.;
Arvanaghi, M.; Vankar, Y. D. J. Org. Chem. 1980, 45, 3531–3532.
17. Typical synthetic procedure for fused d-hydroxy-
c-lactones: cyclization of 1a to 2a.
Acknowledgment
A
mixture of sodium iodide (1.5 mmol, 223.5 mg) and TMSCl (1.5 mmol,
162 mg) in dry CH2Cl2 was stirred for 5 min under Argon atmosphere, after
which time epoxy ester 1a (1 mmol, 294 mg) was added and the resulting
mixture was stirred at room temperature for 16 h. The mixture was then
diluted with CH2Cl2 and washed with water. The crude product was purified by
column chromatography (silica gel, cyclohexane/ethylacetate 4:1) affording 2a
as a white solid (mp 116–120 °C, 223.5 mg, 81% yield, one diastereomer).
We thank Dr. E. Jeanneau (Centre de Diffractométrie Henri
Longchambon, Université Lyon 1) for the X-ray crystallographic
analysis.
1H NMR (300 MHz, CDCl3)
d in ppm: 1.51–1.73 (m, 3H); 1.80–1.88
References and notes
(m, 1H); 2.33–2.41 (m, 1H); 2.51–2.61 (m, 1H); 2.88 (s, 1H, OH) 3.88 (s, 3H,
COOCH3); 5.63 (s, 1H, H6); 7.36–7.40 (m, 5H, Ar). NMR 13C (CDCl3, 75 MHz): d
in ppm: 174.1 (COOCH3), 168.8 (CO), 135.2, 128.9, 128.8, 125.4 (CH Ar), 90.3
(C–OH), 85.4 (C–COOMe), 66.7 (C–HAr), 53.8 (OCH3), 37.6, 33.4, 24.2 (CH2).
HRMS (CI): [MH]+ found 277.1076, calculated for C15H17O5 = 277.1075.
18. See Jacolot, M.; Pehlivan, L.; Bouyssi, D.; Monteiro, N.; Balme, G. next paper.
1. (a) Yang, X.; Shimizu, Y. Tetrahedron Lett. 1993, 34, 761–764; Schlewer, G.;
Stampf, J.-L.; Benezra, C. J. Med. Chem. 1980, 23, 1031–1038; (b) Xu, M.-H.;
Wang, W.; Xia, L.-J.; Lin, G.-Q. J. Org. Chem. 2001, 66, 3953–3962; (c) Davidson,
B. S.; Ireland, C. M. J. Nat. Prod. 1990, 53, 1036–1038.
2. (a) Hanessian, S.; Murray, P. J.; Sahoo, S. P. Tetrahedron Lett. 1985, 26, 5623–
5626; (b) Hanessian, S.; Murray, P. J.; Sahoo, S. P. Tetrahedron Lett. 1985, 26,