A. Jana, R. Azhakar, G. Tavcˇar, H. W. Roesky, I. Objartel, D. Stalke
SHORT COMMUNICATION
120, 3166–3216; Angew. Chem. Int. Ed. 2008, 47, 3122–3172; r)
M. Melaimi, M. Soleilhavoup, G. Bertrand, Angew. Chem.
2010, 122, 8992–9032; Angew. Chem. Int. Ed. 2010, 49, 8810–
8849; s) L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39,
1903–1912.
instrument equipped with a Bruker Apex II detector (Mo-Kα radia-
tion, λ = 0.71073 Å, 101 K).[16] The integration was performed with
SAINT V7.68A,[17] which was followed by an empirical absorption
correction with SADABS 2008/2.[18] The structures were solved by
direct methods (SHELXS) and refined against F2 by using full-
matrix least-squares methods with SHELXL.[19] All non-hydrogen
atoms were refined with anisotropic displacement parameters. The
hydrogen atoms were refined isotropically on calculated positions
by using a riding model; their Uiso values were constrained to
1.5 Ueq of their pivot atoms for terminal sp3 carbon atoms and 1.2
times for all other carbon atoms with the exception of H1Ј, H2Ј,
H3Ј at B1 and H2, which was found freely.
[3]
a) D. P. Mills, L. Soutar, W. Lewis, A. J. Blake, S. T. Liddle, J.
Am. Chem. Soc. 2010, 132, 14379–14381; b) C.-H. Yang, J. Bel-
tran, V. Lemaur, J. Cornil, D. Hartmann, W. Sarfert, R.
Fröhlich, C. Bizzari, L. D. Cola, Inorg. Chem. 2010, 49, 9891–
9901; c) H.-J. Park, K. H. Kim, S. Y. Choi, H.-M. Kim, W. I.
Lee, Y. K. Kang, Y. K. Chung, Inorg. Chem. 2010, 49, 7340–
7352; d) R. S. Crees, M. L. Cole, L. R. Hanton, C. J. Sumby,
Inorg. Chem. 2010, 49, 1712–1719; e) C. Dash, M. M. Shaikh,
R. J. Butcher, P. Ghosh, Inorg. Chem. 2010, 49, 4972–4983; f)
C.-F. Fu, C.-C. Lee, Y.-H. Liu, S.-M. Peng, S. Warsink, C. J.
Elsevier, J.-T. Chen, S.-T. Liu, Inorg. Chem. 2010, 49, 3011–
3018; g) S. Naeem, L. Delaude, A. J. P. White, J. D. E. T. Wil-
ton-Ely, Inorg. Chem. 2010, 49, 1784–1793; h) W.-Q. Zhang,
A. C. Whitwood, I. J. S. Fairlamb, J. M. Lynam, Inorg. Chem.
2010, 49, 8941–8952; i) F. Huang, G. Lu, L. Zhao, Z.-X. Wang,
J. Am. Chem. Soc. 2010, 132, 12388–12396; j) C.-H. Hsieh,
M. Y. Darensbourg, J. Am. Chem. Soc. 2010, 132, 14118–
14125; k) O. Schuster, L. Yang, H. G. Raubenheimer, M. Al-
brecht, Chem. Rev. 2009, 109, 3445–3478; l) P. Arnold, S. Pear-
son, Coord. Chem. Rev. 2007, 251, 596–609; m) M. Albrecht,
Chem. Commun. 2008, 3601–3610; n) K. E. Krahulic, H. M.
Tuononen, M. Parvez, R. Roesler, J. Am. Chem. Soc. 2009,
131, 5858–5865; o) L. Benhamou, E. Chardon, G. Lavigne, S.
Bellemin-Laponnaz, V. César, Chem. Rev. 2011, 111, 2705–
2733.
a) B. Quillian, P. Wei, C. S. Wannere, P. v. R. Schleyer, G. H.
Robinson, J. Am. Chem. Soc. 2009, 131, 3168–3169; b) Y.
Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P.
v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069–1071;
c) Y. Wang, G. H. Robinson, Chem. Commun. 2009, 5201–
5213.
a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke,
Angew. Chem. 2009, 121, 5793–5796; Angew. Chem. Int. Ed.
2009, 48, 5683–5686; b) J. Li, S. Merkel, J. Henn, K. Meindl,
A. Döring, H. W. Roesky, R. S. Ghadwal, D. Stalke, Inorg.
Chem. 2010, 49, 775–777; c) G. Tavcˇar, S. S. Sen, R. Azhakar,
A. Thorn, H. W. Roesky, Inorg. Chem. 2010, 49, 10199–10202;
d) R. Azhakar, G. Tavcˇar, H. W. Roesky, J. Hey, D. Stalke, Eur.
J. Inorg. Chem. 2011, 475–477; e) R. Azhakar, S. P. Sarish, G.
Tavcˇar, H. W. Roesky, J. Hey, D. Stalke, D. Koley, Inorg. Chem.
2011, 50, 3028–3036; f) R. S. Ghadwal, K. Pröpper, B. Dittrich,
P. G. Jones, H. W. Roesky, Inorg. Chem. 2011, 50, 358–364.
E. Aldeco-Parez, A. J. Rosenthal, B. Donnadieu, P. Parames-
waran, G. Frenking, G. Bertrand, Science 2008, 321, 1069–
1071.
Y. Wang, Y. P. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III,
P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2010, 132,
14370–14372.
Y. Wang, Y. P. Xie, M. Y. Abraham, P. Wei, H. F. Schaefer III,
P. v. R. Schleyer, G. H. Robinson, Organometallics 2011, 30,
1303–1306.
a) D. M. Lindsay, D. McArthur, Chem. Commun. 2010, 46,
2474–2476; b) J. Monot, M. M. Brahmi, S.-H. Ueng, C. Rob-
ert, M. D.-E. Murr, D. P. Curran, M. Malacria, L. Fenster-
bank, E. Lacote, Org. Lett. 2009, 11, 4914–4917; c) S.-H. Ueng,
M. M. Brahmi, E. Derat, L. Fensterbank, E. Lacote, M. Mal-
acria, D. P. Curran, J. Am. Chem. Soc. 2008, 130, 10082–10083.
P. Bissinger, H. Braunschweig, T. Kupfer, K. Radacki, Organo-
metallics 2010, 29, 3987–3990.
R. S. Ghadwal, H. W. Roesky, M. Granitzka, D. Stalke, J. Am.
Chem. Soc. 2010, 132, 10018–10020.
T. Stey, D. Stalke, “Lead Structures in Lithium Organic Chem-
istry” in The Chemistry of Organolithium Compounds (Eds.: Z.
Rappoport, I. Marek), John Wiley & Sons, Chichester, United
Kingdom, 2004, pp. 47–120.
Crystal Data for 3: C39H62BLiN2O3, Mr
=
624.66,
0.2ϫ0.1ϫ0.05 mm, a = 10.369(2), b = 10.965(2), c = 18.731(3) Å,
α = 73.74(2)°, β = 89.37(3)°, γ = 69.21(2)°, V = 1902.0(6) Å3, Z =
2, ρcalcd. = 1.091 Mg/m3, μ (Mo-Kα) = 0.067 mm–1, 2θmax = 50.7°,
40602 reflections measured, 6982 independent (Rint = 0.029), R1 =
0.0387 [IϾ2σ(I)], wR2 = 0.0960 (all data), residual density peaks:
0.242 to –0.219 eÅ–3. CCDC-826662 contains the supplementary
crystallographic data for 3. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
Acknowledgments
[4]
[5]
The authors thank the Deutsche Forschungsgemeinschaft for sup-
porting this work. R. A. and G. T. are thankful to the Alexander
von Humboldt Stiftung for research fellowships. D. S. kindly ac-
knowledges funding from the Deutsche Forschungsgemeinschaft
(DFG) Priority Programme 1178, the DNRF funded Centre of
Materials Crystallography and the doctoral programme Catalysis
for Sustainable Synthesis, provided by the Land Niedersachsen.
Support of the Chemetall, Frankfurt and Langelsheim and the
Volkswagenstiftung is appreciated.
[1] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc.
1991, 113, 361–363.
[2] a) S. P. Nolan (Ed.), N-Heterocyclic Carbenes in Synthe-
sis,Wiley-VCH, Weinheim, Germany, 2006; b) F. Glorius (Ed.),
N-Heterocyclic Carbenes in Transition Metal Catalysis,
Springer-Verlag, Berlin, 2007; c) J. Chun, I. G. Jung, H. J. Kim,
M. Park, M. S. Lah, S. U. Son, Inorg. Chem. 2009, 48, 6353–
6355; d) P.-C. Chiang, M. Rommel, J. W. Bode, J. Am. Chem.
Soc. 2009, 131, 8714–8718; e) V. J. Catalano, A. L. Moore, J.
Shearer, J. Kim, Inorg. Chem. 2009, 48, 11362–11375; f) N. D.
Harrold, R. Waterman, G. L. Hillhouse, T. R. Cundari, J. Am.
Chem. Soc. 2009, 131, 12872–12873; g) A. Sinha, S. M. W. Ra-
haman, M. Sarkar, B. Saha, P. Daw, J. K. Bera, Inorg. Chem.
2009, 48, 11114–11122; h) A. G. Tennyson, E. L. Rosen, M. S.
Collins, V. M. Lynch, C. W. Bielawski, Inorg. Chem. 2009, 48,
6924–6933; i) Y. Lee, B. Li, A. H. Hoveyda, J. Am. Chem. Soc.
2009, 131, 11625–11633; j) P. M. Zimmerman, A. Paul, C. B.
Musgrave, Inorg. Chem. 2009, 48, 5418–5433; k) S. Groysman,
R. H. Holm, Inorg. Chem. 2009, 48, 621–627; l) E. M. Phillips,
M. Riedrich, K. A. Scheidt, J. Am. Chem. Soc. 2010, 132,
13179–13181; m) M. K. Samantaray, C. Dash, M. M. Shaikh,
K. Pang, R. J. Butcher, P. Ghosh, Inorg. Chem. 2011, 50, 1840–
1848; n) J. Mathew, C. H. Suresh, Inorg. Chem. 2010, 49, 4665–
4669; o) J. M. Smith, J. R. Long, Inorg. Chem. 2010, 49, 11223–
11230; p) K. Hirai, T. Itoh, H. Tomioka, Chem. Rev. 2009, 109,
3275–3332; q) F. E. Hahn, M. C. Jahnke, Angew. Chem. 2008,
[6]
[7]
[8]
[9]
[10]
[11]
[12]
3688
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 3686–3689