Y. Ono, L.-B. Han / Tetrahedron Letters 47 (2006) 421–424
423
hedron Lett. 2000, 41, 9781; (c) Drag, M.; Kafarski, P.;
Pirat, J.-L.; Cristau, H.-J. Phosphorus, Sulfur, Silicon
Relat. Elem. 2002, 177, 1153.
tuted diphenylvinylphosphine oxide did not afford the
corresponding epoxide either.
8. (a) Griffin, C. E.; Kundu, S. K. J. Org. Chem. 1969, 34,
5132; (b) Eisch, J. J.; Galle, J. E. J. Organomet. Chem.
1988, 341, 293.
9. Colonna, S.; Gaggero, N.; Carrea, G.; Ottolina, G.; Pasta,
P.; Zambianchi, F. Tetrahedron Lett. 2002, 43, 1797.
10. Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003,
1977.
In summary, the epoxidation of alkenylphosphorus
compounds with H2O2 is highly affected by the substit-
uents of the phosphorus compounds. By using H2O2/
K2CO3, epoxidation takes place efficiently with alken-
ylphosphonates or phosphinates having a phenyl group
at a-position (2a and 5a, R = Ph), and by using H2O2/
Na2WO4/Et3N, epoxidation takes place efficiently with
alkenylphosphonic acids21 or phosphinic acids having
an aliphatic group at a- or b-positions (3b, 30b, 6b,
and 60b, R = n-C6H13). Alkenylphosphine oxides did
not produce the corresponding epoxides under similar
conditions. These results, to some extent, resemble the
early observations on the epoxidation of a,b-unsatu-
rated carbonyl compounds,15 which deserve future
mechanistic exploration.
11. Hydrogen peroxide epoxidation of the vinylphospho-
¨
nates bearing carbonyl group: (a) Ohler, E.; Zbiral, E.;
El-Badawi, M. Tetrahedron Lett. 1983, 24, 5599; (b)
¨
Ohler, E.; El-Badawi, M.; Zbiral, E. Chem. Ber. 1985,
4099; Hydrogen peroxide epoxidation of bis(phos-
phoryl)ethene: (c) Burgos-Lepley, C. E.; Mizsak, S. A.;
Nugent, R. A.; Johnson, R. A. J. Org. Chem. 1993, 58,
4159; (d) Duncan, G. D.; Li, Z.-M.; Khare, A. B.;
McKenna, C. E. J. Org. Chem. 1995, 60, 7080; (e) Page,
P. C. B.; McKenzie, M. J.; Gallagher, J. A. Synth.
Commun. 2002, 32, 211; Preparation of fosfomycin: (f)
Glamkowski, E. J.; Gal, G.; Purick, R.; Davidson, A. J.;
Sletzinger, M. J. Org. Chem. 1970, 35, 3510; (g) Wang,
X.-Y.; Shi, H.-C.; Sun, C.; Zhang, Z.-G. Tetrahedron
2004, 60, 10993.
Acknowledgements
This work was supported by New Energy and Industrial
Technology Development Organization (NEDO) of
Japan (Industrial Technology Research Grant Program
in 2004).
12. Han, L.-B.; Zhang, C.; Yazawa, H.; Shimada, S. J. Am.
Chem. Soc. 2004, 126, 5080, and references cited therein.
13. Bunton, C. A.; Minkoff, G. J. J. Chem. Soc. 1949, 665.
14. (a) Mimoun, H. In The Chemistry of Functional Groups,
Peroxides; Patai, S., Ed.; John Wiley and Sons: Chiches-
ter, 1983, Chapter 15; (b) Jorgensen, K. A. Chem. Rev.
1989, 89, 431. Although the reaction mechanism for the
tungstate catalyzed epoxidation with H2O2 is quite com-
plicated and details have not been fully understood, the
reaction is believed to proceed via intermediates of peroxo
tungsten complexes (see also Ref. 10).
Supplementary data
1
Detailed experimental procedures and copies of H and
13C spectra of the phosphinoyl epoxides. Supplementary
data associated with this article can be found, in the
15. Similar tungstate catalyzed epoxidation of a,b-unsatu-
rated carboxylic acids with H2O2 is known to be affected
by a lot of factors such as pH (the addition of a base) and
concentration, under which a complex of different tung-
state species exhibiting different catalytic activities are
believed to be produced (a) Payne, G. B.; Williams, P. H.
J. Org. Chem. 1959, 24, 54; (b) Kirshenbaum, K. S.;
Sharpless, K. B. J. Org. Chem. 1985, 50, 1979; (c) Shi,
H.-C.; Chen, G.; Wang, X.-Y.; Zhang, Z.-G. J. Mol.
Catal. A: Chem. 2004, 216, 29.
References and notes
1. (a) Hendlin, D.; Stapley, E. O.; Jackson, M.; Wallick, H.;
Miller, A. K.; Wolf, F. J.; Miller, T.; Chaiet, W. L.;
Kahan, F. M.; Foltz, E. L.; Woodruff, H. B.; Mata, J. M.;
Hernandez, S.; Mochales, S. Science 1969, 166, 122; (b)
Christensen, B. G.; Leanza, J. W.; Beattie, T. R.; Patchett,
A. A.; Arison, B. H.; Ormond, R. F.; Kuehl, F. A.;
Albers-Shongerg, G.; Jardetzky, O. Science 1969, 166, 123.
2. (a) de Vries, E. J.; Janssen, D. B. Curr. Opin. Biotechnol.
2003, 14, 414; (b) Palacios, F.; Alonso, C.; de los Santos, J.
M. Chem. Rev. 2005, 105, 899.
3. Reviews: (a) Iorga, B.; Eymery, F.; Savignac, P. Synthesis
1999, 207; (b) Fields, S. C. Tetrahedron 1999, 55, 12237.
4. (a) Levy, J. N.; Mckenna, C. E. Phosphorus, Sulfur, Silicon
Relat. Elem. 1993, 85, 1; (b) Foucaud, A.; Bakouetila, M.
Synthesis 1987, 854.
16. The difference of the reactivity between 2a and 20a may be
due to the fact that the resulting anionic intermediate
ꢀ
generated by the addition of HO2 could be more
stabilized in case of 2a. However, a steric effect may be
also contributing since DFT calculations (HF/
6-311G(2d,p)//B3LYP/6-31G(d) level of theory) showed
lower LUMO of 20a (1.96 eV) than that of 2a (2.58 eV)
which excludes the possibility of lacking of electrophilicity
of 20a.
17. Retention of the trans configuration during present
3
reaction was confirmed on the basis of JHH value
5. (a) Kadyrov, A. A.; Rokhlin, E. M.; Knunyants, I. L. Bull.
Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1982,
2063; (b) Coutrot, P.; Grison, C.; Leocouvey, M.; Kribii,
A.; El Gadi, A. Phosphorus, Sulfur, Silicon Relat. Elem.
1998, 133, 167.
6. (a) Hunger, K. Chem. Ber. 1968, 101, 3530; (b) Sobolev, V.
G.; Ionin, B. I. J. Gen. Chem. USSR (Engl. Transl.) 1985,
55, 198; (c) Ryabov, B. V.; Ionin, B. I.; Petrov, A. A. J.
Gen. Chem. USSR (Engl. Transl.) 1989, 59, 233.
(ꢁ3 Hz) of two adjacent oxirane ring protons on the
products, which are typical of trans-substituted phos-
phoryl oxiranes (Ref. 7b) (see Supplementary data).
18. It was noted, however, that in the absence of H2O2 no
reaction took place between 2c and NaOH, indicating
that H2O2 is necessary for the formation of 7 under the
present conditions. Thus, the b-addition of HOOꢀ to the
carbon–carbon double bond must proceed. The inter-
mediate might be unstable or decomposed before the
oxirane ring was formed. Vinylphosphonic acid could
be epoxidized in the presence of a tungstate salt (40%
yield).
7. (a) Cristau, H.-J.; Mbianda, X. Y.; Geze, A.; Beziat, Y.;
Gasc, M.-B. J. Organomet. Chem. 1998, 571, 189; (b)
Cristau, H.-J.; Pirat, J.-L.; Drag, M.; Kafarski, P. Tetra-