Table 3 Benzosilole synthesis through aryllithiation–cyclizationa
Engl., 1997, 36, 93–95; (f) H. Yorimitsu, J. Tang, K. Okada,
H. Shinokubo and K. Oshima, Chem. Lett., 1998, 11–12.
4 For examples of carbometalation of dialkylacetylenes having no
heteroatoms using organometals other than arylmetals, see:
E. Shirakawa, K. Yamasaki, H. Yoshida and T. Hiyama, J. Am.
Chem. Soc., 1999, 121, 10221–10222; M. Suginome, M. Shirakura
and A. Yamamoto, J. Am. Chem. Soc., 2006, 128, 14438–14439.
5 Alkenylmetalations of functionalized alkynes have been reported. For
intramolecular alkenyllithiation of silylalkynes, see: G. Wu, F. E.
Cederbaum and E. Negishi, Tetrahedron Lett., 1990, 31, 493–496. For
vinylmagnesiation of propargylic alcohols, see: P. Forgione and
A. G. Fallis, Tetrahedron Lett., 2000, 41, 11–15; P. Forgione,
P. D. Wilson and A. G. Fallis, Tetrahedron Lett., 2000, 41, 17–20. For
decarbonylative alkenylstannylation of propargylic esters, see:
Y. Nakao, J. Satoh, E. Shirakawa and T. Hiyama, Angew. Chem.,
Int. Ed., 2006, 45, 2271–2274. For alkenylmagnesiation of o-hydroxy-
methylphenylacetylenes, see: K. Murakami, H. Ohmiya, H. Yorimitsu
and K. Oshima, Chem. Lett., 2007, 1066–1067.
6 We have reported iron-catalyzed alkyllithiation of arylalkynes. In
the paper, we have also disclosed that Fe(acac)3/CuBr/PBu3 as a
catalyst is effective for the addition of PhLi to PhCRCMe.
However, the Fe/Cu system is not applicable to dialkylacetylenes
(cf. entry 4 of Table 1). E. Shirakawa, D. Ikeda, T. Ozawa,
S. Watanabe and T. Hayashi, Chem. Commun., 2009, 1885–1887.
7 There have been several reports on iron-catalyzed carbometalation of
alkynes. For alkyllithiation of alkynes having a hereroatom, see:
M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi, Y. Baba and
A. Hosomi, Angew. Chem., Int. Ed., 2001, 40, 621–623. For alkyl-
magnesiation of alkynes having a heteroatom, see: D. Zhang and J. M.
Ready, J. Am. Chem. Soc., 2006, 128, 15050–15051. For arylmagnesiation
of arylalkynes, see: T. Yamagami, R. Shintani, E. Shirakawa and
T. Hayashi, Org. Lett., 2007, 9, 1045–1048 See also ref. 2a.
T/
1C
Time/ Yield Isomer
h
(%)b ratioc
Entry R5 in 10 R3, R4 in 2
1
2
3
4
5
6
H (10a) Pr, Pr (2m)
H (10a) Me, Ph (2o)
H (10a) Bu, Ph (2n)
H (10a) Ph, Ph (2p)
30 2.5
2
92
91
87
93
73
95
—
ꢀ20
97 : 3
94 : 6
—
499 : 1
499 : 1
ꢀ20 2.5
ꢀ20 2.5
H (10a) Bu, 1-hexynyl (2s) ꢀ20
2
F (10b)
Me, Ph (2o)
ꢀ20 1.5
a
The reaction was carried out in Et2O (2.0 mL) under a nitrogen
atmosphere using an o-(trimethylsilyl)phenyllithium (10: 0.64 mmol)
and an alkyne (2: 0.40 mmol) in the presence of Fe(acac)3 (0.020 mmol).
c
Yield of isolated product 11 based on 2. 11 : regioisomer concerning
b
alkyne 2.
8 Synthesis of benzosiloles through an addition–cyclization sequence is
accomplished by rhodium-catalyzed reaction of o-(trimethylsilyl)-
phenylboronic acids with alkynes. M. Tobisu, M. Onoe, Y. Kita and
N. Chatani, J. Am. Chem. Soc., 2009, 131, 7506–7507. For examples of
other benzosilole synthesis, see: M. D. Rausch and L. P. Klemann,
J. Am. Chem. Soc., 1967, 89, 5732–5733; Y. Ura, Y. Li, F.-Y. Tsai,
K. Nakajima, M. Kotora and T. Takahashi, Heterocycles, 2000, 52,
1171–1189; S. Yamaguchi, C. Xu, H. Yamada and A. Wakamiya,
J. Organomet. Chem., 2005, 690, 5365–5377; T. Matsuda,
Y. Yamaguchi and M. Murakami, Synlett, 2008, 561–564;
T. Matsuda, S. Kadowaki, Y. Yamaguchi and M. Murakami, Chem.
Commun., 2008, 2744–2746; L. Ilies, Y. Sato, C. Mitsui, H. Tsuji and
E. Nakamura, Chem.–Asian J., 2010, 5, 1376–1381.
Scheme 4 Synthesis of compounds having two or three benzosilole
units linked by a benzene ring.
having two or three benzosilole units with conjugation through a
benzene ring were obtained in high yields by the reaction of
polyynes 12 (Scheme 4).
9 For reviews on properties of siloles, see: S. Yamaguchi and K. Tamao,
J. Chem. Soc., Dalton Trans., 1998, 3693–3702; J. Dubac, A. Laporterie
and G. Manuel, Chem. Rev., 1990, 90, 215–263; M. Hissler, P. W. Dyer
´
and R. Reau, Coord. Chem. Rev., 2003, 244, 1–44; J. Chen and Y. Cao,
Macromol. Rapid Commun., 2007, 28, 1714–1742.
This work has been supported financially in part by a Grant-in-
Aid for Scientific Research (No. 22605005) from Ministry of
Education, Culture, Sports, Science and Technology, Japan.
10 Use of FeCl3 (Z99.99% trace metals basis, Aldrich Co., product
number 451649) instead of Fe(acac)3 scored a similar yield (79%). For
the facility of handling, we used Fe(acac)3 for further examination.
Notes and references
1 For reviews, see: P. Knochel, Comprehensive Organic Synthesis, ed.
B. M. Trost, I. Fleming and M. F. Semmelhack, Pergamon Press,
New York, 1991, vol. 4, pp. 865–911; I. Marek, N. Chinkov and
D. Banon-Tenne, Metal-Catalyzed Cross-Coupling Reactions, ed.
A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2nd edn,
2004, pp. 395–478. For a review including synthesis of tetrasubstituted
alkenes through carbometalation of alkynes, see: A. B. Flynn and
W. W. Ogilvie, Chem. Rev., 2007, 107, 4698–4745. For a review on
carbolithiation, see: A.-M. L. Hogan and D. F. O’Shea, Chem.
Commun., 2008, 3839–3851.
2 For examples of arylmetalation of dialkylacetylenes having no
heteroatoms, see: (a) E. Shirakawa, T. Yamagami, T. Kimura,
S. Yamaguchi and T. Hayashi, J. Am. Chem. Soc., 2005, 127,
17164–17165; (b) K. Murakami, H. Ohmiya, H. Yorimitsu and
K. Oshima, Org. Lett., 2007, 9, 1569–1571; (c) K. Murakami,
H. Yorimitsu and K. Oshima, Org. Lett., 2009, 11, 2373–2375.
3 For arylmetalation of arylalkynes, see: (a) J. J. Eisch and W. C. Kaska,
J. Am. Chem. Soc., 1966, 88, 2976–2983; (b) J. J. Eisch, R. Amtmann
and M. W. Foxton, J. Organomet. Chem., 1969, 16, P55–P59;
(c) J. J. Eisch and R. Amtmann, J. Org. Chem., 1972, 37, 3410–3415;
(d) J. G. Duboudin and B. Jousseaume, J. Organomet. Chem., 1978, 162,
11 Furstner and coworkers have recently reported in relation to the
¨
mechanism of iron-catalyzed cross-coupling reaction that treatment of
FeCl3 with a large excess of phenyllithium (1b) in Et2O gives [Ph4Fe]-
[Li(OEt )] . A. Furstner, H. Krause and C. W. Lehmann, Angew.
¨
Chem., Int. Ed., 2006, 45, 440–444; A. Furstner, R. Martin,
2
4
¨
H. Krause, G. Seidel, R. Goddard and C. W. Lehmann, J. Am. Chem.
Soc., 2008, 130, 8773–8787; B. D. Sherry and A. Furstner, Acc. Chem.
¨
Res., 2008, 41, 1500–1511. See also: T. A. Bazhenova,
R. M. Lobkovskaya, R. P. Shibaeva, A. E. Shilov, A. K. Shilova,
M. Gruselle, G. Leny and B. Tchoubar, J. Organomet. Chem., 1983, 244,
265–272. GC analysis in our hands showed that the reaction of FeCl3
(0.40 mmol) with Ar–Li (1a: 10 equiv. or 1b: 10 or 6 equiv.) gave Ar–Ar
in 0.54–0.68 mmol, which roughly corresponds to reduction of Fe(III) to
Fe(0). Generation of Ar–Ar was completed within 20 min in each case.
12 For examples of silole ring formation through nucleophilic sub-
stitution on a silicon atom by C(sp2)–Li with Me as a leaving
group, where pentaorganosilicates are considered to be intermedi-
ates, see: Z. Wang, H. Fang and Z. Xi, Tetrahedron Lett., 2005, 46,
499–501; P. F. Hudrlik, D. Dai and A. M. Hudrlik, J. Organomet.
Chem., 2006, 691, 1257–1264; Z. Xi, Bull. Chem. Soc. Jpn., 2007,
80, 1021–1032; N. Yu, C. Wang, F. Zhao, L. Liu, W.-X. Zhang
and Z. Xi, Chem.–Eur. J., 2008, 14, 5670–5679.
209–222; (e) T. Studemann and P. Knochel, Angew. Chem., Int. Ed.
¨
c
9716 Chem. Commun., 2011, 47, 9714–9716
This journal is The Royal Society of Chemistry 2011