ORGANIC
LETTERS
2011
Vol. 13, No. 19
5208–5211
Synthesis of Isomerically Pure
anti-Anthradithiophene Derivatives
†
Benoıt Tylleman, Christophe M. L. Vande Velde,†,‡ Jean-Yves Balandier,† Sara Stas,†
ˆ
Sergey Sergeyev,†,§ and Yves Henri Geerts*,†
ꢀ
Universite Libre de Bruxelles (ULB), Faculte des Sciences, Laboratoire de Chimie des
Polymeres, CP 206/01, Boulevard du Triomphe, 1050 Bruxelles, Belgium, Karel de Grote
ꢀ
ꢁ
University College, Department of Applied Engineering, Salesianenlaan 30, 2660
Antwerp, Belgium, and University of Antwerp, Department of Chemistry,
Groenenborgerlaan 171, 2020 Antwerp, Belgium
Received August 2, 2011
ABSTRACT
The regiospecific total synthesis and characterization of anti-isomers of 2,8-dialkylanthradithiophenes are described. The “anti” structure of the
ADT derivatives is demonstrated by 13C NMR as well as single crystal X-ray diffraction.
For decades, organic electronics have formed a hot topic
in materials science.1 A wide range of conjugated polymers
is currently used asorganic semiconductors.2 However, the
drawback of using polymers for optoelectronic applica-
tions is their low purity and difficult characterization
inherent to their mass distribution. Consequently, the use
of “small” organic molecules in electronic devices is an
interesting alternative, since theyare easier to produce with
a high purity degree. In addition, they order much better in
the solid state. Among the large variety of small molecules,
linear fused (hetero)acenes have been preferentially used
thanks to their high performances in electronic devices.1f,g
For example, pentacene has already demonstrated a charge
carrier mobility (μ) of 1.5 up to 5 cm2/V s in field-effect
3
transistors (FET).3 However, it is known for being poorly
stable toward photoinduced degradation, especially in
solution,4 which is a weak point for solution processed
organic electronic devices. Analogues of fused linear acenes
including heteroatoms in their aromatic core, such as
anthradithiophene (ADT) derivatives, have been described
and have shown (i) a better stability toward photo-oxida-
tion than their corresponding acenes and (ii) high charge
carrier mobilities of about 0.4 to 6.0 cm2/V s.5 The use of
3
(3) (a) Lin, Y. Y.; Gundlach, D. J.; Nelson, S.; Jackson, T. N. IEEE
Trans. Electron Devices 1997, 44, 1325. (b) Kelly, T. W.; Muyres, D. V.;
Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc.
2003, 2, 678.
(4) Ono, K.; Totani, H.; Hiei, T.; Yoshino, A.; Saito, K.; Eguchi, K.;
Tomura, M.; Nishida, J. I.; Yamashita, Y. Tetrahedron 2007, 63, 9699.
(5) (a) Jurchescu, O. D.; Hamadani, B. H.; Xiong, H. D.; Park, S. K.;
Subramanian, S.; Zimmerman, N. M.; Anthony, J. E.; Jackson, T. N.;
Gundlach, D. J. Appl. Phys. Lett. 2008, 92, 132103. (b) Jurchescu, O. D.;
Subramanian, S.; Kline, R. J.; Hudson, S. D.; Anthony, J. E.; Jackson,
T. N.; Gundlach, D. J. Chem. Mater. 2008, 20, 6733.
(6) (a) Conrad, B. R.; Chan, C. K.; Loth, M. A.; Parkin, S. R.; Zhang,
X.; DeLongchamp, D. M.; Anthony, J. E.; Gundlach, D. J. Appl. Phys.
Lett. 2010, 97, 133306. (b) Laquindanum, J. G.; Katz, H. E.; Lovinger,
A. J. J. Am. Chem. Soc. 1998, 120, 664. (c) Jaquith, M. J.; Anthony, J. E.;
Marohn, J. A. J. Mater. Chem. 2009, 19, 6116. (d) Chen, M. C.; Kim, C.;
Chen, S.-Y.; Chiang, Y.-J.; Chung, M. C.; Facchetti, A.; Marks, T. J.
J. Mater. Chem. 2008, 18, 1029. (e) Lloyd, M. T.; Mayer, A. C.;
Subramian, S.; Mourey, D. A.; Herman, D. J.; Bapat, A. V.; Anthony,
J. E.; Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144.
†
ꢀ
Universite Libre de Bruxelles.
‡ Karel de Grote University College.
§ University of Antwerp.
(1) For example: (a) Mas-Torrent, M.; Rovira, C. Chem. Soc. Rev.
2008, 37, 827. (b) Allard, S.; Forstern, M.; Souharce, B.; Thiem, H.;
Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070. (c) Facchetti, A.
Materials Today 2007, 10, 28. (d) Coakley, K. M.; McGehee, M. D.
Chem. Mater. 2004, 16, 4533. (e) Murphy, A. R.; Frechet, J. M. J. Chem.
Rev. 2007, 107, 1066. (f) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (g)
Coropceanu, V.; Kwon, O.; Wex, B.; Kaafarani, B. R.; Gruhn, N. E.;
Durivage, J. C.; Neckers, D. C.; Bredas, J. L. Chem.;Eur. J. 2006, 12,
2073. (h) Sergeyev, S.; Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007,
36, 1902. (i) Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.;
ꢀ
ꢀ
ꢀ
Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926. (j) Roncali, J.;
Leriche, P.; Cravino, A. Adv. Mater. 2007, 19, 2045.
(2) (a) Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009,
21, 1323. (b) Guenes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev.
2007, 107, 1324.
r
10.1021/ol202089t
Published on Web 09/14/2011
2011 American Chemical Society