it would be of interest to know whether a mechanistic
reason exists behind this apparent disparity. In this paper,
we report our synthetic studies which aimed to explore the
capabilities of bifunctional thioureas in a Michael-type
organo-cascade reaction. As a result, an interesting regu-
latory mechanism for the catalytic cycle was noticed: the
chiral product of the first Michael step inhibited its own
further reaction. Nevertheless, this seemingly restrictive
effect, which turned out to be the exaggerated form of the
double diastereocontrol, was alleviated and beneficially
exploited for the iterative assembly of densely functiona-
lized cyclohexanes.
addition reactions.9 Despite the catalytic advantage
offered by the dual activation, the application of these
bifunctional catalysts (or their analogs) was scarce in multi-
component reactions. Therefore, a synthetic study was
initiated to uncover any structural or mechanistic reasons
which could adversely affect a cascade reaction. We envi-
saged a thiourea 1a catalyzed MichaelÀ(MichaelÀHenry)
stepwise sequence (Figure 1) as a model of a cascade process.
First, the enantioenriched R-6a was formed in an organo-
catalytic Michael addition of nitromethane (4) to chalcone
5a.8a,b In the second and separate step, we probed construct-
ing a cyclohexane derivative 8 in a catalytic MichaelÀHenry
sequence using the same catalyst and conditions. Despite the
high reactivity of nitrostyrene 7a, however, we were unable
to detect 8 or any addition products after 1 week.
The bifunctional quinine organocatalyst 1a,b and its
pseudoenantiomer 28 have became a versatile tool in
organocatalysis, especially in asymmetric 1,2- and 1,4-
(5) Reviews on organo-cascade reactions with secondary amine
catalysts: (a) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38,
2178. (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(c) Westermann, B.; Ayaz, M.; van Berkel, S. S. Angew. Chem., Int. Ed.
2010, 49, 846. Selected examples:(d) Lu, M.; Zhu, D.; Lu, Y.; Hou, Y.;
Tan, B.; Zhong, G. Angew. Chem., Int. Ed. 2008, 47, 10187. (e) Chandler,
C.; Galzerano, P.; Michrowska, A.; List, B. Angew. Chem., Int. Ed.
2009, 48, 1978. (f) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W.
Angew. Chem., Int. Ed. 2009, 48, 3699. (g) Simmons, B.; Walji, A. M.;
MacMillan, D. W. C. Angew. Chem., Int. Ed. 2009, 48, 4349. (h) Jiang,
H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2009, 48, 6844. (i) Hong, B.-C.; Kotame, P.;
Tsai, C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776. (j) Enders, D.; Wang,
C.; Mukanova, M.; Greb, A. Chem. Commun. 2010, 46, 2447. (k) Ma, A.;
Ma, D. Org. Lett. 2010, 12, 3634.
(6) Selected examples of Brønsted acid catalyzed reactions: (a) Zhou,
J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498. (b) Terada, M.; Machioka,
K.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129, 10336. (c) Muratore,
M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon,
D. J. J. Am. Chem. Soc. 2009, 131, 10796. (d) Akiyama, T.; Katoh, T.;
Mori, K. Angew. Chem., Int. Ed. 2009, 48, 4226. (e) Albert, B. J.;
Yamamoto, H. Angew. Chem., Int. Ed. 2010, 49, 2747.
(7) A successful MichaelÀMichael two-component cascade reaction
was reported using Takemoto’s bifunctional thiourea catalyst. The one-
pot domino method has limited applicability, and it was generally less
efficient than the two-step cyclization using TMG or KOH bases in the
second step: (a) Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe, H.;
Takemoto, Y. Tetrahedron 2006, 62, 365. A rather similar case using
bifunctional cinchonas: (b) He, P.; Liu, X.; Shi, J.; Lin, L.; Feng, X.
Org. Lett. 2011, 13, 939. A MichaelÀMichael two-component cascade
reaction with DKR interplay using thiourea catalyst 1: (c) Wang, J.; Xie,
H.; Li, H.; Zu, L.; Wang, W. Angew. Chem., Int. Ed. 2008, 47, 4177.
(d) Yu, C.; Zhang, Y.; Song, A.; Ji, Y.; Wang, W. Chem.;Eur. J. 2011,
17, 770. (e) Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.;
Figure 1. Bifunctional thiourea catalysts and stepwise multi-
component organocatalytic strategy to construct cyclohexane
derivative 8.
The unsuccessful initial experiment prompted us to
investigate its mechanistic origin. In addition to the failure
of the second step, we also attempted to find a rationale for
the exclusivemonoadductformation inthe first step. These
two cases are analogous and seem to be mechanistically
related. As a working hypothesis, we supposed that the
incapacity of catalyst 1a for the second Michael addition
arose from an intriguing situation of double diastereo-
control.10,11 Specifically, the combination of the chiral cat-
alyst 1aandits chiralproductR-6agenerates amismatched
pair with a sufficiently high barrier to the succeeding
Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 8379.
A
multicomponent organo-cascade reaction, thiourea catalyst 1 and 2 (or
their analogs) were applied in orthogonal tandem catalytic procedures
(combined with JørgensenÀHayashicatalyst). (f) Wang, Y.; Han, R.-G.;
Zhao, Y.-L.; Yang, S.; Xu, P.-Y.; Dixon, D. J. Angew. Chem., Int. Ed.
2009, 48, 9834. (g) Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.;
Dixon, D. J.; Xu, P.-Y. Chem.;Eur. J. 2010, 16, 3922. (h) Ren, Q.; Gao,
Y.; Wang, J. Chem.;Eur. J. 2010, 16, 13594. (i) Gao, Y.; Ren, Q.; Wu,
H.; Li, M.; Wang, J. Chem. Commun. 2010, 46, 9232. (j) Gao, Y.; Ren,
Q.; Siau, W.-Y.; Wang, J. Chem. Commun. 2011, 47, 5819. (k) Corrri-
gendum: An exceptional MichaelÀMichaelÀHenry cascade promoted
by a bifunctional thiourea catalyst. Basle, O.; Raimondi, W.; del Mar
Sanchez Duque, M.; Bonne, D.; Constantieux, T.; Rodriguez, J. Org.
Lett. 2010, 12, 5246À5249.
(10) For details about double diastereocontrol, see: (a) Walsh, P. J.;
Kozlowski, M. C. Fundamentals of Asymmetric Catalysis; University
Science Books: Sausalito, CA, 2009. (b) Masamune, S.; Choy, W.; Petersen,
J. S.; Sita, L. R. Angew. Chem., Int. Ed. 1985, 24, 1. (c) Sharpless, K. B.
Chem. Scr. 1985, 25, 71. (d) Evans, D. A.; Kozlowski, M. C.; Murry,
J. A.; Burgey, C. S.; Campos, K. R.; Conell, B. T.; Staples, R. J. J. Am.
Chem. Soc. 1999, 121, 669.
(11) Recent organocatalytic examples of double diastereocontrol
(predominant external, catalyst control): (a) Alcaide, B.; Almendros,
P.; Luna, A.; Torres, M. R. J. Org. Chem. 2006, 71, 4818. (b) Gryko, D.;
(8) Our work on bifunctional organocatalysis: (a) Vakulya, B.;
ꢀ
ꢀ
ꢀ
Varga, Sz.; Csampai, A.; Soos, T. Org. Lett. 2005, 7, 1967. (b) Hamza,
ꢀ
A.; Schubert, G.; Soos, T.; Papai, I. J. Am. Chem. Soc. 2006, 128, 13151.
(c) Vakulya, B.; Varga, Sz.; Soos, T. J. Org. Chem. 2008, 73, 3475.
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
(d) Tarkanyi, G.; Kiraly, P.; Varga, Sz.; Vakulya, B.; Soos, T. Chem.;
ꢀ
ꢀ
Eur. J. 2008, 14, 6078. (e) Kiraly, P.; Soos, T.; Varga, Sz.; Vakulya, B.;
ꢀ
ꢀ
Tarkanyi, G. Magn. Reson. Chem. 2010, 48, 13.
ꢀ
ꢀ
Zimnicka, M.; Lipinski, R. J. Org. Chem. 2007, 72, 964. (c) Crisostomo,
ꢀ
(9) Review on thiourea based cinchonas: (a) Connon, S. J. Chem.
Comm 2008, 2499. Seminal references: (b) Li, B.-J.; Jiang, L.; Liu, M.;
Chen, Y.-C. Synlett 2005, 603. (c) Reference 8a. (d) McCooey, S. H.;
Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367. (e) Ye, J.; Dixon,
D. J.; Hynes, P. S. Chem. Commun. 2005, 4481.
F. R. P.; Lledo, A.; Shenoy, S. R.; Iwasawa, T.; Rebek, J., Jr. J. Am.
Chem. Soc. 2009, 131, 7402. (d) Peschiulli, A.; Procuranti, B.; O’
Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380. (e) Lifchits, O.;
Reisinger, C. M.; List, B. J. Am. Chem. Soc. 2010, 132, 10227. (f) Morris,
K. A.; Arendt, K. M.; Oh, S. H.; Romo, D. Org. Lett. 2010, 12, 3764.
Org. Lett., Vol. 13, No. 20, 2011
5417