5162
K. M. Haney et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5159–5163
Table 4
Therapeutic index (TI) for 9a (anibamine), 9b, and 10b
Compound
3T3 versus M12
3T3 versus DU145
3T3 versus PC3
NR
6.95
5.86
15.84
WST-1
NR
WST-1
NR
WST-1
9a (Anibamine)
9b
10b
7.20
8.98
40.77
22.21
52.78
14.80
23.01
80.78
38.11
20.04
67.86
35.84
20.77
103.86
92.26
To further verify whether the inhibitory effect of our lead com-
pound, anibamine, against prostate cancer cell line proliferation
was due to its inhibition of CCL5 binding on the chemokine recep-
tor CCR5, we retested its anti-proliferation activity against the
CCL5 (30 nM) treated M12 cell line. Compound 9, anibamine,
showed higher potency under this condition, as indicated by its
the MOLT-4/CCR5 cell line and TAK-779. We also thank Dr. Xianjun
Fang (Department of Biochemistry, VCU) for providing the NIH 3T3
cell line for the basal cytotoxicity screening.
Supplementary data
ED50 value at 0.84 0.08 lM. Such result at least partially
Supplementary data (chemical synthesis procedures and com-
pounds analysis data) associated with this article can be found,
supported our hypothesis that our lead compound may inhibit
the proliferation of prostate cancer cell M12 through its inhibition
of CCL5/CCR5 axial function.
Due to the reported hemolysis by anibamine,32 all the
compounds were further evaluated for their hemolytic toxicity at
References and notes
1. Opperman, M. Cell Signal. 2004, 16, 1201.
concentrations up to 100
Table 3. None of the analogs exhibited significant hemolytic activ-
ity under 50 M, and the HC50 value was generally from one to two
lM. The results are summarized in
2. Fernandez, E. J.; Lolis, E. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 469.
3. Samson, M.; Libert, F.; Doranz, B. J.; Rucker, J.; Liesnard, C.; Farber, C. M.;
Saragosti, S.; Lapouméroulie, C.; Cognaux, J.; Forceille, C.; Muyldermans, G.;
Verhofstede, C.; Burtonboy, G.; Georges, M.; Imai, T.; Rana, S.; Yi, Y.; Smyth, R.
J.; Collman, R. J.; Doms, R. W.; Vassart, G.; Parmentier, M. Nature 1996, 382, 722.
4. Littman, D. R. Cell 1998, 93, 677.
l
orders of magnitude higher than their IC50 concentrations for the
prostate cancer cell lines.
To further characterize their basal cytotoxicity and to assess
whether their anti-proliferative activity might be associated with
non-selective cytotoxicity, anibamine and its analogs were tested
by using a Neutral Red and WST-1 protocol in NIH3T3 cell.33 The
data presented in Table 3 indicate that most of these compound
required significantly higher concentrations to demonstrate cyto-
toxicity against 3T3 cells than the prostate cancer cell lines. The
therapeutic index values for compound 9b and 10b (Table 4)
validated their candidacy for our future animal model study.
In summary, as the CCL5/CCR5 axis seems to be important in
prostate cancer progression, chemokine receptor CCR5 antagonists
are likely to have anti-prostate cancer activity. The natural product
CCR5 antagonist anibamine represents a novel structural skeleton
and has been applied as a lead to design novel CCR5 antagonists
as anti-prostate cancer agents. A series of anibamine analogs were
designed and synthesized based on this hypothesis. In the MOLT-4/
CCR5 Ca2+ mobilization assay against the endogenous CCR5 agonist
CCL5, these compounds seemed to act consistently as CCR5 antag-
onists. In anti-proliferative activity screening against prostate can-
cer cell lines, all the analogs were active against three different
cancer cell lines with compound 10b demonstrating the most
promising activities. Studies of selectivity using red blood cells
and NIH3T3 cells indicated that significantly higher concentrations
of the analogs were required before toxicity was evident in these
normal cells models. A more comprehensive modification of anib-
amine’s structural skeleton is ongoing in order to characterize its
structure–activity relationship thoroughly with the goal of devel-
oping more potent anti-prostate cancer agents. Such efforts may
also facilitate the clarification of the role of CCL5/CCR5 axis in pros-
tate cancer progression.
5. Chinen, J.; Shearer, W. T. J. Allergy Clin. Immunol. 2002, 110, 189.
6. Kedzierska, K.; Crowe, S. M.; Turville, S.; Cunningham, A. L. Rev. Med. Virol.
2003, 13, 39.
7. Howard, O. M.; Oppenheim, J. J.; Wang, J. M. J. Clin. Immunol. 1999, 19, 280.
8. Reeves, J. D.; Piefer, A. J. Drugs 2005, 65, 1747.
9. Este, J. A. Curr. Med. Chem. 2003, 10, 1617.
10. Schwarz, M. K.; Wells, T. N. C. Nat. Rev. Drug Disc. 2002, 1, 347.
11. Lusso, P. EMBO J. 2006, 25, 447.
12. (a) Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.;
Rickett, G.; Smith-Burchnell, C.; Napier, C.; Webster, R.; Armour, D.; Price, D.;
Stammen, B.; Wood, A.; Perros, M. Antimicrob. Agents Chemother. 2005, 49,
4721; (b) Wood, A.; Armour, D. Prog. Med. Chem. 2005, 43, 239.
13. (a) Baba, M.; Nishimura, O.; Kanzaki, N.; Okamoto, M.; Sawada, H.; Iizawa, Y.;
Shiraishi, M.; Aramaki, Y.; Okonogi, K.; Ogawa, Y.; Meguro, K.; Fujino, M. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 5698; (b) Maeda, K.; Nakata, H.; Koh, Y.;
Miyakawa, T.; Ogata, H.; Takaoka, Y.; Shibayama, S.; Sagawa, K.; Fukushima, D.;
Moravek, J.; Koyanagi, Y.; Mitsuya, H. J. Virol. 2004, 78, 8654.
14. (a) Tagat, J. R.; McCombie, S. W.; Nazareno, D.; Labroli, M. A.; Xiao, Y.;
Steensma, R. W.; Strizki, J. M.; Baroudy, B. M.; Cox, K.; Lachowicz, J.; Varty, G.;
Watkins, R. J. Med. Chem. 2004, 2405; (b) Strizki, J. M.; Tremblay, C.; Xu, S.;
Wojcik, L.; Wagner, N.; Gonsiorek, W.; Hipkin, R. W.; Chou, C. C.; Pugliese-Sivo,
C.; Xiao, Y.; Tagat, J. R.; Cox, K.; Priestley, T.; Sorota, S.; Huang, W.; Hirsch, M.;
Reyes, G. R.; Baroudy, B. M. Antimicrob. Agents Chemother. 2005, 49, 4911; (c)
Palani, A.; Tagat, J. R. J. Med. Chem. 2006, 49, 2851.
15. (a) US Cancer Statistics: 2002 Incidence and Mortality, the most comprehensive
federal report available on state-specific cancer rates. The Department of
Health and Human Services, November 2005.; (b) Miller, B. A.; Ries, L. A. G.;
Hankey, B. F. Eds.; 1993, Seer Cancer Statistics Review, NIH Publ., No. 93-2789,
16. (a) Balkwill, F.; Mantavani, A. Lancet 2001, 357, 539; (b) Nelson, W. G.;
DeMarzo, A.; Isaacs, W. B. N. Engl. J. Med. 2003, 349, 366.
17. Mantovani, A.; Bottazzi, B.; Colotta, F.; Sozzani, S.; Ruco, L. Immunol. Today
1992, 13, 265.
18. Opdenakker, G.; Van Damme, J. Immunol. Today 1992, 13, 463.
19. Opdenakker, G.; Van Damme, J. Cytokine 1992, 4, 251.
20. Frederick, M. J.; Gary, L. Rev. Mol. Med. 2001, 1.
21. Robinson, S. C.; Scott, K. A.; Wilson, J. L.; Thompson, R. G.; Proudfoot, A. E. I.;
Balkwill, F. Cancer Res. 2003, 63, 8360.
22. Coussens, L. M.; Werb, Z. Nature 2002, 420, 860.
23. Koenig, J. E.; Senge, T.; Allhoff, E. p.; Koenig, W. Prostate 2004, 58, 121.
24. Vaday, G. G.; Peehl, D. M.; Kadam, P. A.; Lawrence, D. M. Prostate 2006, 66, 124.
25. Jayasuriya, H.; Herath, K. B.; Ondeyka, J. G.; Polishook, J. D.; Bills, G. F.;
Dombrowski, A. W.; Springer, M. S.; Siciliano, S.; Malkowitz, L.; Sanchez, M.;
Guan, Z. Q.; Tiwari, S.; Stevenson, D. W.; Borris, R. P.; Singh, S. B. J. Nat. Prod.
2004, 67, 1036.
26. Zhang, X.; Haney, K. M.; Richardson, A. C.; Wilson, E.; Gewirtz, D. A.; Ware, J. L.;
Zehner, Z. E.; Zhang, Y. Bioorg. Med. Chem. Lett. 2010, 20, 4627.
27. Li, G.; Watson, K.; Buckheit, R. W.; Zhang, Y. Org. Lett. 2007, 9, 2043.
28. Li, G.; Haney, K. M.; Kellogg, G. E.; Zhang, Y. J. Chem. Inf. Model. 2009, 49, 120.
29. (a) Thoma, G.; Nuninger, F.; Schaefer, M.; Akyel, K. G.; Albert, R.; Beerli, C.;
Bruns, C.; Francotte, E.; Luyten, M.; MacKenzie, D.; Oberer, L.; Streiff, M. B.;
Acknowledgments
We are grateful to the funding support from US Army Prostate
Cancer Research Program PC073739, and A.D. Williams Multi-
school Research Award at VCU. The content is solely the responsi-
bility of the authors and does not necessarily represent the official
views of the US Army Prostate Cancer Research Program. We thank
NIH AIDS Research and Reference Reagent Program for providing