of Health (533F/Q/1), Cariplo Foundation (Project NOBEL-
GUARD), Banca IntesaSanPaolo and PRIN (PROT.2007T7M-
SAJ) for financial support, and Flamma (Italy) for the kind gift
of Fmoc amino acids. Francisco Cardona kindly acknowledges
Fundac¸ ao para a Ciencia e Tecnologia (FCT, Portugal) for the
PhD grant (SFRH/44888/2008).
Notes and references
1 R. Brookmeyer, S. Gray and C. Kawas, Am. J. Public Health,
1998, 88, 1337–1342.
2 R. Brookmeyer, M. M. Corrada, F. C. Curriero and C. Kawas,
Arch. Neurol., 2002, 59, 1764–1767.
3 C. L. Masters, R. Cappai, K. J. Barnham and V. L. Villemagne,
J. Neurochem., 2006, 97, 1700–1725.
4 D. J. Selkoe, Neuron, 2001, 32, 177–180.
5 S. S. Sisodia and P. H. St George-Hyslop, Nat. Rev. Neurosci.,
2002, 3, 281–290.
6 A. I. Bush, Neurobiol. Aging, 2002, 23, 1031–1038.
7 R. Sabate and J. Estelrich, Langmuir, 2005, 21, 6944–6949.
8 S. Taniguchi, N. Suzuki, M. Masuda, S. Hisanaga, T. Iwatsubo,
M. Goedert and M. Hasegawa, J. Biol. Chem., 2005, 280,
7614–7623.
Fig. 2 (A) Highlight of the polar/apolar substituents on the aromatic
ring: violet colour apolar, orange colour polar and yellow colour in
between. (B) Fractional STD effects calculated for compounds 20, 22,
23, 24, 25, 26, 27, 28 and 29. These values are proportional to
compound affinity for Ab1–42 oligomers.
9 F. Re, C. Airoldi, C. Zona, M. Masserini, B. La Ferla,
N. Quattrocchi and F. Nicotra, Curr. Med. Chem., 2010, 17,
2990–3006.
10 D. C. Koester, A. Holkenbrink and D. B. Werz, Synthesis, 2010,
19, 3217–3242.
11 M. Leibeling, D. C. Koester, M. Pawliczek, S. C. Schild and
D. B. Werz, Nat. Chem. Biol., 2010, 6, 199–201.
12 J. S. Yadav, B. V. S. Reddy, L. Chandraiah, B. Jagannadh,
S. K. Kumar and A. C. Kunwar, Tetrahedron Lett., 2002, 43,
4527–4530.
affinity, while the polarity of the aromatic substituents, as
previously stated, plays a crucial role in the interaction.
The conformational analysis of these molecules, carried out
using molecular mechanics (MM) and molecular dynamics (MD)
simulations, fully supported the NMR results. Calculations were
performed by using MM3*26,27 force field, as implemented in the
MacroModel28 program (Maestro Suite). The differences in
affinity for Ab1–42 peptide are due to the nature of the sub-
stituent on the aromatic ring and are not a consequence of
conformational differences. In fact, according to the modelling
data, compounds 20–29 present the same conformation. The 30
conformations with the lowest energy found for compounds
20–29 are reported in Fig S4 and Fig. S5 (ESIz).
13 M. Mayer and B. Meyer, Angew. Chem., Int. Ed., 1999, 38,
1784–1788.
14 B. Meyer and T. Peters, Angew. Chem., Int. Ed., 2003, 42, 864–890.
15 C. Airoldi, A. Palmioli, A. D’Urzo, S. Colombo, M. Vanoni,
E. Martegani and F. Peri, ChemBioChem, 2007, 8, 1376–1379.
16 A. Palmioli, E. Sacco, C. Airoldi, F. Di Nicolantonio, A. D’Urzo,
S. Shirasawa, T. Sasazuki, A. Di Domizio, L. De Gioia,
E. Martegani, A. Bardelli, F. Peri and M. Vanoni, Biochem.
Biophys. Res. Commun., 2009, 386, 593–597.
17 R. Caraballo, H. Dong, J. P. Ribeiro, J. Jimenez-Barbero and
´
O. Ramstrom, Angew. Chem., Int. Ed., 2010, 49, 589–593.
¨
18 C. Airoldi, S. Sommaruga, S. Merlo, P. Sperandeo, L. Cipolla,
A. Polissi and F. Nicotra, Chem.–Eur. J., 2010, 16, 1897–1902.
19 T. Haselhorst, T. Fiebig, J. C. Dyason, F. E. Fleming,
H. Blanchard, B. S. Coulson and M. von Itzstein, Angew. Chem.,
Int. Ed., 2011, 50, 1055–1058.
20 C. Airoldi, S. Sommaruga, S. Merlo, P. Sperandeo, L. Cipolla,
A. Polissi and F. Nicotra, ChemBioChem, 2011, 12, 719–727.
21 Y. Yuan, D. W. Bleile, X. Wen, D. A. R. Sanders, K. Itoh,
H.-w. Liu and B. M. Pinto, J. Am. Chem. Soc., 2008, 130,
3157–3168.
The values of the key proton–proton distances and dihedral
angles monitored during the MD are reported in the ESIz
(Fig. S6–S16).
A new class of small molecules Ab peptide ligands, with a
glyco-fused benzopyran structure, has been developed. As
expected, the aromatic moiety is mainly involved in the
interaction with the peptides. Those compounds with apolar
substituents attached to the aromatic ring showed the highest
interaction. The glyco-fused moiety surely confers solubility in
physiological conditions and is not much involved in the
interaction; this finding could allow further useful functiona-
lizations for therapeutic and diagnostic purposes. Finally, the
conformational analysis showed a common conformation for
all compounds, thus supporting the importance of the
aromatic substituents revealed by NMR studies.
22 M. D. Dı
R. J. Carbajo, M. del Olmo, A. Canales-Mayordomo, A. Pineda-
Lucena, G. Asensio and J. Jimenez-Barbero, ChemBioChem, 2010,
11, 2424–2432.
´
az, M. Palomino-Schatzlein, F. Corzana, C. Andreu,
¨
´
23 C. Airoldi, L. Colombo, C. Manzoni, E. Sironi, A. Natalello,
S. M. Doglia, G. Forloni, F. Tagliavini, E. Del Favero, L. Cantu,
F. Nicotra and M. Salmona, Org. Biomol. Chem., 2011, 9, 463–472.
24 C. Airoldi, C. Zona, E. Sironi, L. Colombo, M. Messa, D. Aurilia,
M. Gregori, M. Masserini, M. Salmona, F. Nicotra and B. La
Ferla, J. Biotechnol., DOI: 10.1016/j.jbiotec.2011.07.021, in press.
25 J. P. Ribeiro, S. Andre
R. J. Alves and J. Jime
415–419.
´
, F. J. Canada, H.-J. Gabius, A. P. Butera,
´
nez-Barbero, ChemMedChem, 2010, 5,
The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no.
212043 and from Regione Lombardia, Fondo per la promozione
di accordi istituzionali, Progetto no. 4779 ‘‘Network Enabled
Drug Design (NEDD)’’. We acknowledge the Italian Ministry
26 N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc., 1989,
111, 8551–8566.
´ ´
27 M. Martın-Pastor, J. F. Espinosa, J. L. Asensio and J. Jimenez-
Barbero, Carbohydr. Res., 1997, 298, 15–49.
28 MacroModel, MacroModel 9.6, Schrodinger, LLC, New York,
2008.
¨
c
10268 Chem. Commun., 2011, 47, 10266–10268
This journal is The Royal Society of Chemistry 2011