ORGANIC
LETTERS
2011
Vol. 13, No. 20
5413–5415
Direct Hiyama Cross-Coupling of
Enaminones With Triethoxy(aryl)silanes
and Dimethylphenylsilanol
Lei Bi†,‡ and Gunda I. Georg*,‡
Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive,
Lawrence, Kansas 66045, United States, and Department of Medicinal Chemistry
and the Institute for Therapeutics Discovery and Development, University of Minnesota,
717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
Received August 14, 2011
ABSTRACT
2,3-Dihydropyridin-4(1H)-ones undergo direct CÀH functionalization at C5 in the palladium(II)-catalyzed Hiyama reaction, using
triethoxy(aryl)silanes and dimethylphenylsilanol. The reagent CuF2 has a dual role in the reactions with triethoxy(aryl)silanes. It is a source of
fluoride to activate the silane in the Hiyama reaction and also serves as the reoxidant to convert Pd(0) to Pd(II) in the catalytic cycle.
Cross-coupling reactions that directly convert CÀH to
CÀC bonds are valuable atom-efficient chemistry pro-
cesses when compared with conventional cross-coupling
reactions.1,2 A transition metal-catalyzed CÀH functiona-
lization obviates the need for a preactivation step to set up
the substrate for the cross-coupling reaction. As a CÀC
bond-forming strategy, direct arylation of CÀH bonds has
attracted considerable attention.3 However, the majority
of these reactions have been performed employing aro-
matic CÀH bonds and often involve a directing group.4
We have recently shown that enaminones (2,3-dihydropyr-
idin-4(1H)-ones) can be substrates for direct CÀH func-
tionalization in Pd(II)-catalyzed Suzuki-type reactions.5
We have proposed that the innate nucleophilicity of C5 of
enaminones allowsfor the direct reactionwithelectrophilic
Pd(II), which is followed by deprotonation of the palla-
dium intermediate, transmetalation, and reductive elimi-
nation (Figure 1).6 The catalytic cycle is completed by
reoxidation of Pd(0) to Pd(II) with an appropriate oxidant
such as Cu(OAc)2.
† University of Kansas.
‡ University of Minnesota.
(1) (a) Godula, K.; Sames, D. Science 2006, 312, 67. (b) Ellman, J. A.
Science 2007, 316, 1131.
(2) For recent reviews, see:(a) Dyker, G.; Handb., C-H Transform.
2005, 2, 465. (b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev.
2007, 107, 465. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem.
Res. 2009, 42, 1074. (d) Chen, X.; Engle, Keary M.; Wang, D.-H.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (e) Sun, C.-L.; Li, B.-J.; Shi,
Z.-J. Chem. Commun. 2010, 46, 677.
(3) For a recent review, see: Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147.
(4) For related reactions see: (a) Liu, Y.; Li, D.; Park, C.-M. Angew.
Chem., Int. Ed. 2011, 50, 7333. (b) Bai, Y.-G.; Zeng, J.; Cai, S.-T.; Liu,
X.-W. Org. Lett. 2011, 13, 4394. (c) Cheng, D.; Gallagher, T. Org. Lett.
2009, 11, 2639. (d) Colbon, P.; Ruan, J.; Purdie, M.; Xiao, J. Org. Lett.
2010, 12, 3670. (e) Pelletier, G.; Larivee, A.; Charette, A. B. Org. Lett.
2008, 10, 4791. (f) Ramtohul, Y. K.; Chartrand, A. Org. Lett. 2007, 9,
1029. (g) Sorensen, U. S.; Pombo-Villar, E. Helv. Chim. Acta 2004, 87,
82. (h) Wuertz, S.; Rakshit, S.; Neumann, J. J.; Droege, T.; Glorius, F.
Angew. Chem., Int. Ed. 2008, 47, 7230. (i) Xu, Y.-H.; Lu, J.; Loh, T.-P.
J. Am. Chem. Soc. 2009, 131, 1372. (j) Zhou, H.; Chung, W.-J.; Xu,
Y.-H.; Loh, T.-P. Chem. Commun. 2009, 3472. (k) Zhou, H.; Xu, Y.-H.;
Chung, W.-J.; Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 5355. (l) Heck,
R. F. J. Am. Chem. Soc. 1968, 90, 5535.
We have recently demonstrated the utility of this chem-
istry for the concise enantiospecific synthesis of the phe-
nanthropiperidine alkaloids ipalbidine and antofine,7
tylocrebrine,8 and boehmeriasin A.9
(5) Ge, H.; Niphakis, M. J.; Georg, G. I. J. Am. Chem. Soc. 2008, 130,
3708.
(6) Niphakis, M. J.; Turunen, B. J.; Georg, G. I. J. Org. Chem. 2010,
75, 6793.
r
10.1021/ol202202a
2011 American Chemical Society
Published on Web 09/22/2011